There have been many advances in the solar chimney power plant since 1930 and the first pilot work was built in Spain (Manzanares) that produced 50 KW. The solar chimney power plant is considered of a clean power generation that needs to be investigated to enhance the performance by studying the effect of changing the area of passage of air to enhance the velocity towards the chimney to maximize design velocity. In this experimental and numerical study, the reduction area of solar collector was investigated. The reduction area that mean changing the height of glass cover from the absorbing plate (h1=3.8cm, h2=2.6cm and h3=1.28cm). The numerical study was performed using ANSYS Fluent software package (version 14.0) to solve governing equations. The aim of this work was to study the effect of change the height of reduction area to the design velocity (velocity move the blade of turbine at inlet in the chimney). The results showed that the third height (h3=1.28cm) gives the best result because when decreasing the height between the glass cover and absorbing plate, the area between them decreased and the design velocity increased then the efficiency of solar chimney model was increased.
Focusing of Gaussian laser beam through nonlinear media can induce spatial self- phase modulation which forms a far field intensity pattern of concentric rings. The nonlinear refractive index change of material depends on the number of pattern rings. In this paper, a formation of tunable nonlinear refractive index change of hybrid functionalized carbon nanotubes/silver nanoparticles acetone suspensions (F-MWCNTs/Ag-NPs) at weight mixing ratio of 1:3 and volume fraction of 6x10-6 , 9x10-6 , and 18x10-6 using laser beam at wavelength of 473nm was investigated experimentally. The results showed that tunable nonlinear refractive indices were obtained and increasing of incident laser power density led to increase the nonlinear refractive inde
... Show MoreStrengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha
... Show More
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.
The aim of this research is to study experime
... Show MoreIn this paper, an experimental study of the thermal performance for hybrid solar air conditioning system was carried out, to investigate system suitability for the hot climate in Iraq. The system consists of vapor compression unit combined with evacuated tube solar collector and liquid storage tank. A three-way valve was installed after the compressor to control the direction flow of the refrigerant, either to the storage tank or directly to the condenser. The performance parameters were collected by data logger to display and record in the computer by using LabVIEW software. The results show that the average coefficient of performance of hybrid solar air conditioning system (R=1) was about 2.42 to 2.77 and the average p
... Show MoreIn the present work, experimental tests was done to explain the effect of insulation and water level on the yield output. Linear basin, single slope solar still used to do this purpose. The test was done from May to August 2017 in Mosul City-Iraq (Latitude: Longitude: Elevation: 200 m, and South-East face). Experimental results showed that the yield output of the still increased by 20.785% and 19.864% in case of using thermal insulation at 4cm and 5cm respectively, also the yield output decrease by 15.134% as the water level increase from 4 to 5cm, with the presence of insulation and 14.147% without it. It has been conclude that the insulation and water level play important role in the process of passive
... Show MoreIn the present study, the effect of new cross-section fin geometries on overall thermal/fluid performance had been investigated. The cross-section included the base original geometry of (triangular, square, circular, and elliptical pin fins) by adding exterior extra fins along the sides of the origin fins. The present extra fins include rectangular extra fin of 2 mm (height) and 4 mm (width) and triangular extra fin of 2 mm (base) 4 mm (height). The use of entropy generation minimization method (EGM) allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by con
... Show MoreSuccessfully, theoretical equations were established to study the effect of solvent polarities on the electron current density, fill factor and efficiencies of Tris (8-hydroxy) quinoline aluminum (Alq3)/ ZnO solar cells. Three different solvents studied in this theoretical works, namely 1-propanol, ethanol and acetonitrile. The quantum model of transition energy in donor–acceptor system was used to derive a current formula. After that, it has been used to calculate the fill factor and the efficiency of the solar cell. The calculations indicated that the efficiency of the solar cell is influenced by the polarity of solvents. The best performance was for the solar cell based on acetonitrile as a solvent with electron current density of (5.0
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
Many studies have been made and still concerning the field of translation. Since the mid-90's a considerable amount of researches has tackled the problem of gender and its effect on the process and the product of translation. Simon (1996, p 508) points out that when comparing women and men as translators and writers through history, women seem to be the weaker side. This paves the way to feminist movements which produce prominent studies concerning gender as a concept and translator's gender as practice on the quality and the accuracy of the translation.
Flotow (in Meschia, 2012, p 1-4) outlines several issues that can be
... Show MoreThis investigation integrates experimental and numerical approaches to study a novel solar air heater aimed at achieving an efficient design for a solar collector suitable for drying applications under the meteorological conditions of Iraq. The importance of this investigation stems from the lack of optimal exploitation of solar energy reaching the solar collector, primarily attributable to elevated thermal losses despite numerous designs employed in such solar systems. Consequently, enhancing the thermal performance of solar collectors, particularly those employed in crop drying applications, stands as a crucial focal point for researchers within this domain. Two identical double-pass solar air heaters were designed and constructed for
... Show More