The present study involves experimental analysis of the modified Closed Wet Cooling Tower (CWCT) based on first and second law of thermodynamics, to gain a deeper knowledge in this important field of engineering in Iraq. For this purpose, a prototype of CWCT optimized by added packing under a heat exchanger was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the towers thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of air measured at intermediate points of the heat exchanger and packing. Exergy of water and air were calculated by applying the exergy destruction method on the cooling tower. Experimental results showed a significant performance improvement when using packing on the CWCT. It can be observed that the thermal efficiency for the CWCT with packing under a heat exchanger and CWCT with packing above the heat exchanger are approximately 40% and 25% higher than that of the CWCT without packing respectively. As another part of the experiment results, it is indicated that the exergy destruction is directly proportional to air flow rate, cooling water flow rate, inlet cooling water flow rate and inlet Air Wet Bulb Temperature (AWBT) whereas, it is inversely proportional with spray water flow rate. In comparison with the cooling capacity of the tower, it was found that the exergy destruction approximately less than 20%. Exergy efficiency behavior is inversely proportional with the behavior of the exergy destruction. Empirical correlations are obtained to predict water film heat transfer coefficient and air-water mass transfer coefficient considering the influences of operational parameters.
Aquatic Oligochaeta is an important group of Macroinvertebrates that has been very remarkable as bioindicators for assessing water pollution and determining its degree in water bodies. Hence, the idea of the current study aims at studying the impact of Baghdad effluents on the Tigris River by using oligochaetes community as bioindicators . For this purpose, four sites along the inside of Baghdad has been chosen. Site S1 has been located upstream, site S2 and S3 has been at midstream and site S4 at the downstream of the River.This investigation has used different types of biological indicators, including the percentage of oligochaeta within benthic invertebrates, which ranged from 49.2-51.28%. The highest percentage of the tubificid w
... Show MoreAn efficient networks’ energy consumption and Quality of Services (QoS) are considered the most important issues, to evaluate the route quality of the designed routing protocol in Wireless Sensor Networks (WSNs). This study is presented an evaluation performance technique to evaluate two routing protocols: Secure for Mobile Sink Node location using Dynamic Routing Protocol (SMSNDRP) and routing protocol that used K-means algorithm to form Data Gathered Path (KM-DGP), on small and large network with Group of Mobile Sinks (GMSs). The propose technique is based on QoS and sensor nodes’ energy consumption parameters to assess route quality and networks’ energy usage. The evaluation technique is conducted on two routing protocols i
... Show MoreWireless sensor networks (WSNs) are emerging in various application like military, area monitoring, health monitoring, industry monitoring and many more. The challenges of the successful WSN application are the energy consumption problem. since the small, portable batteries integrated into the sensor chips cannot be re-charged easily from an economical point of view. This work focusses on prolonging the network lifetime of WSNs by reducing and balancing energy consumption during routing process from hop number point of view. In this paper, performance simulation was done between two types of protocols LEACH that uses single hop path and MODLEACH that uses multi hop path by using Intel Care i3 CPU (2.13GHz) laptop with MATLAB (R2014a). Th
... Show MoreMicrobial fuel cell is a device that uses the microorganism metabolism for the production of electricity under specific operating conditions. Double chamber microbial fuel cell was tested for the use of two cheap electrode materials copper and aluminum for the production of electricity under different operating conditions. The investigated conditions were concentration of microorganism (yeast) (0.5- 2 g/l), solutions temperature (33-45 oC) and concentration of glucose as a substrate (1.5- 6 g/l). The results demonstrated that copper electrode exhibit good performance while the performance of aluminum is poor. The electricity is generated with and without the addition of substrate. Addition of glucose substrate
... Show MoreThe Political Thinking Regarded as an important element for the formulation of the stat, weather in its formation, the structure of it s entity, its political system and it s governmental instruments .The political thinking can not act without determined strategy, So they intend to work hard to formulate a railed strategy that make them able to determine its directions to general issues.
The Study aimed to solve the problem through the following question:
1- What are the levels of Political Thinking and Strategic Analysis in the financial ministry?
2- What are the relation ship between the dimensions of Political T
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show MoreThe characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.