The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is implemented based on hybrid Crossoved Firefly Algorithm with Artificial Bee Colony (CFA-ABC) to tune the controller's parameters to achieve the optimal path. The performance of the hybrid optimization algorithm is verified by various benchmark functions. The simulation results show that the utilizing of CFA and (CFA-ABC ) are better than the original Firefly Algorithm. A simulation example is given to indicate the effectiveness of the proposed algorithm, the results have been done using MATLAB (R2013b), and all trajectory tracking results with two reference trajectories (circular and lemniscates ) are presented.
In this work, some mechanical properties of the polymer coating were improved by preparing a hybrid system containing Graphene (GR) of different weight percentages (0.25, 0.5, 1, and 2wt%) with 5wt% carbon fibres (CF) and added to a polymer coating by using casting method. The properties were improved as GR was added with further improvement on adding 5wt% of CF. The impact strength of acrylic polymer with GR increases with increasing weight ratio of GR; maximum value was obtained when the polymer coating was incorporated with 1wt% GR and 5wt% CF. The impact strength of acrylic polymer with GR and GR/CF composites incorporated with GR at 1wt% and CF at 5wt%. Hardness increase with increasing weight ratio of Gr and a significant imp
... Show MoreThe current study aims to develop a proposed educational program based on augmented reality (AR) technology, in addition to assessing its effectiveness in developing research and historical imagination skills of the Humanities Track's female students at the secondary stage, as well as assessing the correlative and predictive relationships between the amount of growth for the two dependent variables. To achieve this, a secondary school in the city of Makkah Al-Mukarramah was chosen, and an available random sample of (30) female students from the study population was selected. The quasi-experimental approach was followed by this study, particularly one group design. In addition, two tools were used to collect study data, namely: a test of
... Show MoreThe aim of this study is to design a proposed model for a document to insure the mistakes of the medical profession in estimating the compensation for medical errors. The medical profession is an honest profession aimed primarily at serving human and human beings. In this case, the doctor may be subject to error and error , And the research has adopted the descriptive approach and the research reached several conclusions, the most prominent of which is no one to bear the responsibility of medical error, although the responsibility shared and the doctor contributes to them, doctors do not deal with patients according to their educational level and cultural and there are some doctors do not inform patients The absence of a document to insu
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreCipher security is becoming an important step when transmitting important information through networks. The algorithms of cryptography play major roles in providing security and avoiding hacker attacks. In this work two hybrid cryptosystems have been proposed, that combine a modification of the symmetric cryptosystem Playfair cipher called the modified Playfair cipher and two modifications of the asymmetric cryptosystem RSA called the square of RSA technique and the square RSA with Chinese remainder theorem technique. The proposed hybrid cryptosystems have two layers of encryption and decryption. In the first layer the plaintext is encrypted using modified Playfair to get the cipher text, this cipher text will be encrypted using squared
... Show MoreThis study investigates the feasibility of a mobile robot navigating and discovering its location in unknown environments, followed by the creation of maps of these navigated environments for future use. First, a real mobile robot named TurtleBot3 Burger was used to achieve the simultaneous localization and mapping (SLAM) technique for a complex environment with 12 obstacles of different sizes based on the Rviz library, which is built on the robot operating system (ROS) booted in Linux. It is possible to control the robot and perform this process remotely by using an Amazon Elastic Compute Cloud (Amazon EC2) instance service. Then, the map to the Amazon Simple Storage Service (Amazon S3) cloud was uploaded. This provides a database
... Show More