The design, construction and investigation of experimental study of two compound parabolic concentrators (CPCs) with tubular absorber have been presented. The performance of CPCs have been evaluated by using outdoor experimental measurements including the instantaneous thermal efficiency. The two CPCs are tested instantly by holding them on a common structure. Many tests are conducted in the present work by truncating one of them in three different levels. For each truncation the acceptance half angle (θc) was changed. Geometrically, the acceptance half angle for standard CPC is (26o). For the truncation levels for the other CPC 1, 2 and 3 the acceptance half angle were 20o, 26o and 59o, consequently. A significant difference between the instantaneous thermal efficiency of 3.86× CPC (θc=20o) and 2.32× CPC (θc=26o), and between that for 3.61× CPC (θc=26o) and 2.32× CPC (θc=26o). It's noticed that the difference between the instantaneous thermal efficiency of 2.32× CPC (θc=59o) and 2.32× CPC (θc=26o) is small compared with the difference of the first and second cases, the instantaneous thermal efficiency of 2.32× CPC (26o) was higher than those for other three CPCs. The experimental results show that the maximum thermal efficiency of the full 2.32×CPC (26o) is 0.708, the maximum thermal efficiency of the 3.93×CPC (15o), when it's truncated to 3.84× CPC (20o), 3.61× CPC (26o) and 2.32× CPC (59o) are 0.51, 0.52 and 0.66, respectively. As the concentration ratio decreases from (3.93× to 1×), the thermal efficiency, energy losses and optical efficiency increase from (0.47 to 63), (1.58 to 7.2 K.m2/W) and (0.494 to 0.797), respectively.
Increasing the power conversion efficiency (PCE) of silicon solar cells by improving their junction properties or minimizing light reflection losses remains a major challenge. Extensive studies were carried out in order to develop an effective antireflection coating for monocrystalline solar cells. Here we report on the preparation of a nanostructured cerium oxide thin film by pulsed laser deposition (PLD) as an antireflection coating for silicon solar cell. The structural, optical, and electrical properties of a cerium oxide nanostructure film are investigated as a function of the number of laser pulses. The X-ray diffraction results reveal that the deposited cerium oxide films are crystalline in nature and have a cubic fluorite. The field
... Show MoreIn the present work is the deposition of copper oxide using the pulsed laser deposition technique using Reactive Pulsed Laser as a Deposition technique (RPLD), 1.064μm, 7 nsec Q-switch Nd-YAG laser with 400 mJ/cm2 laser energy’s has been used to ablated high purity cupper target and deposited on the porous silicon substrates recorded and study the effect of rapid thermal annealing on the structural characteristics, morphological, electrical characteristics and properties of the solar cell. Results of AFM likelihood of improved absorption, thereby reducing the reflection compared with crystalline silicon surface. The results showed the characteristics of the solar cell and a clear improvement in the efficiency of the solar cell in the
... Show MoreThe research sought to identify the objective trends of postgraduate students at the College of Political Science - University of Baghdad for the period from 2000-2012 through the objective trends of university theses and dissertations and what are the most and least studied topics, with a re-adjustment of previously studied topics towards topics that serve issues of concern to society and avoiding topics that have been studied a lot to avoid repetition. The research came out with the following results, the most prominent of which are: The total number of what was accomplished in this college is 401 theses and dissertations, and the dissertations had the largest share of them, as their percentage reached 69%, with 275 theses compared to 126
... Show MoreThe role of the climate in the development of the performance of the administrative bodies of sports clubs
The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without trackin
... Show MoreThe research deals with the important and modern two subjects, strategic leadership which have six demotions and knowledge management
(four demotions') . the gools & the research is to know the relation & the effect them in the oil ministry (project department) , the sample was (50) persons who works in the department the questionnaire was the tool of data gathering .
The research divided to four parties, the first to the theotical review of the research variables, the second to the research methrology, the third to analysis and discoed the empirical results the last to the conclusions and recommendations .
Heat transfer around a flat plate fin integrated with piezoelectric actuator used as oscillated fin in laminar flow has been studied experimentally utilizing thermal image camera. This study is performed
for fixed and oscillated single and triple fins. Different substrate-fin models have been tested, using fins of (35mm and 50mm) height, two sets of triple fins of (3mm and 6mm) spacing and three frequencies
applied to piezoelectric actuator (5, 30 and 50HZ). All tests are carried out for (0.5 m/s and 3m/s) in subsonic open type wind tunnel to evaluate temperature distribution, local and average Nusselt number (Nu) along the fin. It is observed, that the heat transfer enhancement with oscillation is significant compared to without o