A new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of the compressed signal relative to the size of the uncompressed signal. The proposed algorithms where fulfilled with the use of Matlab package
This work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreCloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an
... Show MoreNurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si
... Show MoreIschemic stroke is a significant cause of morbidity and mortality worldwide. Autophagy, a process of intracellular degradation, has been shown to play a crucial role in the pathogenesis of ischemic stroke. Long non-coding RNAs (lncRNAs) have emerged as essential regulators of autophagy in various diseases, including ischemic stroke. Recent studies have identified several lncRNAs that modulate autophagy in ischemic stroke, including MALAT1, MIAT, SNHG12, H19, AC136007. 2, C2dat2, MEG3, KCNQ1OT1, SNHG3, and RMRP. These lncRNAs regulate autophagy by interacting with key proteins involved in the autophagic process, such as Beclin-1, ATG7, and LC3. Understanding the role of lncRNAs in regulating auto
In this paper, we will focus to one of the recent applications of PU-algebras in the coding theory, namely the construction of codes by soft sets PU-valued functions. First, we shall introduce the notion of soft sets PU-valued functions on PU-algebra and investigate some of its related properties.Moreover, the codes generated by a soft sets PU-valued function are constructed and several examples are given. Furthermore, example with graphs of binary block code constructed from a soft sets PU-valued function is constructed.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show More