Preferred Language
Articles
/
alkej-190
Prediction of Reaction Kinetic of Al- Doura Heavy Naphtha Reforming Process Using Genetic Algorithm
...Show More Authors

In this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad.  One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.

The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and activation energies were determined after fine tuning of the model results with experimental data. The input to the optimization is the compositions for 21 components and the temperature for the effluent stream for each one of the four reactors within the reforming process while the output of optimization is 142 predicted kinetic parameters for 71 reactions within reforming process.  The differential optimization technique using genetic algorithm to predict the parameters of the kinetic model.

To validate the kinetic model, the simulation results of the model based on proposed kinetic model was compared with the experimental results. The comparison between the predicted and commercially results shows a good agreement, while the percentage of absolute error for aromatics compositions are (7.5, 2, 8.3, and 6.1%) and the temperature absolute percentage error are (0.49, 0.5, 0.01, and 0.3%) for four reactors respectively.   

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Eastern-european Journal Of Enterprise Technologies
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
ptimization the Parameters of Magnetic Abrasive Process Using Taguchi Method to Improve the Surface Roughness
...Show More Authors

Abstract  

Magnetic abrasive finishing (MAF) process is one of non-traditional or advanced finishing methods which is suitable for different materials and produces high quality level of surface finish where it uses magnetic force as a machining pressure. A set of experimental tests was planned according to Taguchi orthogonal array (OA) L27 (36) with three levels and six input parameters. Experimental estimation and optimization of input parameters for MAF process for stainless steel type 316 plate work piece, six input parameters including amplitude of tooth pole, and number of cycle between teeth, current, cutting speed, working gap, and finishing time, were performed by design of experiment

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Online 3D path planning for Tri-copter drone using GWO-IBA algorithm
...Show More Authors

View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Wed May 09 2018
Journal Name
International Journal Of Advanced Computer Science And Applications
New Techniques to Enhance Data Deduplication using Content based-TTTD Chunking Algorithm
...Show More Authors

View Publication
Scopus (12)
Crossref (8)
Scopus Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Copy Move Image Forgery Detection using Multi-Level Local Binary Pattern Algorithm
...Show More Authors

Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different

... Show More
Crossref
Publication Date
Wed Jan 15 2003
Journal Name
كلية الترا ث الجامعة
Estimating an Exponentiated Expanded Power Function Distribution Using an Artificial Intelligence Algorithm
...Show More Authors

The distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.

Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Genetic study of Salmonella spp. Producting Betalatimase (ESBLs)
...Show More Authors

Ten isolates were collected from different clinical sources from laboratory in medicine century . These isolates were belonging to the genus Salmonella depending on morphological and biochemical tests . The antibiotic scussptibility tests against 10 antibiotics were examined , and it was found that the 60% isolates have multiple resistant to antibiotic ,(70%) of isolates were resistant to ampicillin,(50%) were resistant to augmentin ,(40%) were resistant to ceftriaxone ,(20%) were resistant to cefotaxime and (10%) were resistant to ciprofloxacin and tetracycline while all isolates showed sensitivity to piperacillin, imipenem, amikacin and erythromycin .The ability of Salmonela isolates to produce ?-lactamase enzymes were tested usin

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 03 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par

... Show More
View Publication
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 12th International Conference On Developments In Esystems Engineering (dese)
Roadway Deterioration Prediction Using Markov Chain Modeling (Wasit Governorate/ Iraq as a Case Study)
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Communications In Computer And Information Science
Automatically Recognizing Emotions in Text Using Prediction by Partial Matching (PPM) Text Compression Method
...Show More Authors

In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref