A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Abstract
An experimental study was conducted for measuring the quality of surface finishing roughness using magnetic abrasive finishing technique (MAF) on brass plate which is very difficult to be polish by a conventional machining process where the cost is high and much more susceptible to surface damage as compared to other materials. Four operation parameters were studied, the gap between the work piece and the electromagnetic inductor, the current that generate the flux, the rotational Spindale speed and amount of abrasive powder size considering constant linear feed movement between machine head and workpiece. Adaptive Neuro fuzzy inference system (ANFIS) was implemented for evaluation of a serie
... Show MoreThe aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est
... Show MoreIn this study, the upgrading of Iraqi heavy crude oil was achieved utilizing the solvent deasphalting approach (SDA) and enhanced solvent deasphalting (e-SDA) by adding Nanosilica (NS). The NS was synthesized from local sand. The XRD result, referred to as the amorphous phase, has a wide peak at 2Θ= (22 - 23º) The inclusion of hydrogen-bonded silanol groups (Si–O–H) and siloxane groups (Si–O–Si) in the FTIR spectra. The SDA process was handled using n-pentane solvent at various solvent to oil ratios (SOR) (4-16/1ml/g), room and reflux temperature, and 0.5 h mixing time. In the e-SDA process, various fractions of the NS (1–7 wt.%) have been utilized with 61 nm particle size and 560.86 m²/g surface area in the presence of 12 m
... Show MoreThe research aims to determine the impact of employees’ retention strategy on organizational memory. This research is historical, descriptive, and analytical. The sample consists of 158 faculty members in five private colleges in Baghdad. The technique used to analyze the data is SEM (Structural Equation Modeling), and SPSS (Statistical Package for the Social Sciences). The research concludes that the employees retaining strategy plays a vital role in retaining employees and hence maintains organizational memory. The findings and recommendations of this research assure the administrations of private colleges that employees retention strategy play a vital role in retaining its employee and hence maintains organizational memory. T
... Show MoreIn this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
This study has aimed to measure the relationship between the skills required for the labor market and the employment of graduates of community colleges at King Khalid University. For gathering the required data, a questionnaire has been designed and distributed to the faculty members of community colleges at King Khalid University in a random sample method. The chosen sample size has covered (123) individuals. Questionnaire forms have been distributed and retrieved from (117) participants. Therefore, the estimated response has reached 95 % of the total sample size. The results of the study have shown that there is not any significant relationship between the skills which the graduates acquire and the requirements of employmen
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show More