In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between the structure and fluid by using a Newmark’s implicit time integration scheme. The results obtained from this paper show that the proposed modeling can be used for a quick assessment of the wind turbine blades taking the fluid-structure interaction into account. This modeling can also be a useful tool for the analysis of airplane propeller blades.
Retreatment Efficacy of Continuous Rotation Versus Reciprocation Kinematic Movements in Removing Gutta-Percha with Calcium Silicate-Based Sealer: SEM Study, Raghad Noori Nawaf*, Ra
ABSTRACT. A new three metal complexes of La(III), Ce(IV) and UO2(II) ions have been synthesized based on a Schiff base derived from the condensation of L-histidine and anisaldehyde. All prepared compounds were characterized by different spectroscopic techniques and Density-functional theory (DFT) calculations. The complexes were proposed to have an octahedral structure based on the investigated results. The optimized shape, numbering system, and dipole moment vector of Ligand and La, Ce, and UO2 (1:1) chelates were investigated. The Schiff base ligand and complexes exhibit moderate action against all of the bacteria tested, with P. aeruginosa, Klebsiella sp., and E. faecalis respectively being the order of inhibition.
... Show MoreThis study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
Hydrate dissociation equilibrium conditions for carbon dioxide + methane with water, nitrogen + methane with water and carbon dioxide + nitrogen with water were measured using cryogenic sapphire cell. Measurements were performed in the temperature range of 275.75 K–293.95 K and for pressures ranging from 5 MPa to 25 MPa. The resulting data indicate that as the carbon dioxide concentration is increased in the gas mixture, the gas hydrate equilibrium temperature increases. In contrast, by increasing the nitrogen concentration in the gas mixtures containing methane or carbon dioxide decreased the gas hydrate equilibrium temperatures. Furthermore, the cage occupancies for the carbon dioxide + methane system were evaluated using the Van der Wa
... Show MoreVariation in the numbers of pectoral fin spines and rays, pelvic fin rays, gill rakers on the first gill arch, anal fin rays, and the number of vertebrae of Silurus triostegus Heckel were examined in specimens from 16 localities that span its entire distribution range in the Tigris, Euphrates, and Shatt al-Arab rivers in Iraq. The mean number of the six meristic traits increases toward high latitudes with maximum and minimum values in the north and south of Iraq. Based on cluster analysis and PCA, the Mesopotamian river samples were clearly separated into three distinct groups. The upper Tigris populations were isolated from those of the middle and southern populations of this river and from those of
Conventional identification of three coccoid green algae isolates was attempted to characterize the studied algae morphologically under compound microscope, which demonstrated confusional phenomenal convergence; all were classified microscopically as the green alga Chlorella vulgaris Beijerinck, 1890.
Phylogenetic studies were conducted to settle the argument about the phenotype by studying the genotype. Genotype the promising field in advance classification by using 18S rRNA and compared to GenBank database using to search the related sequences. The determined sequences showed high a similarity to the strains registered in GenBank.
&
... Show More