This paper comprises the design and operation of mono-static backscatter lidar station based on a pulsed Nd: YAG laser that operates at multiple wavelengths. The three-color lidar laser transmitter is based on the collinear fundamental 1064 nm, second harmonic 532 nm and a third harmonic 355nm output of a Nd:YAG laser. The most important parameter of lidar especially daytime operations is the signal-to-noise ratio (SNR) which gives some instructions in designing of lidar and it is often limit the effective range. The reason is that noises or interferences always badly affect the measured results. The inversion algorithms have been developed for the study of atmospheric aerosols. Signal-to-noise ratio (SNR) of three-color channel receivers were presented while averaging together 1, 20, 50 and 100 lidar returns and combined to the signal to noise ratio associated with the quantization process for each channel.
In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.
It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the
... Show MoreAbstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show MoreThis paper tackles with principal component analysis method (PCA ) to dimensionality reduction in the case of linear combinations to digital image processing and analysis. The PCA is statistical technique that shrinkages a multivariate data set consisting of inter-correlated variables into a data set consisting of variables that are uncorrelated linear combination, while ensuring the least possible loss of useful information. This method was applied to a group of satellite images of a certain area in the province of Basra, which represents the mouth of the Tigris and Euphrates rivers in the Shatt al-Arab in the province of Basra.
... Show MoreThis study was established to investigate the correlation between the expression of matrix metalloproteinases (MMP-1) and the pathogenesis of osteoarthritis (OA). Blood samples were collected from 55 female patients with inflammatory OA and controls for estimation of serum (MMP-1) levels. In the current study, there is significant increase (p<0.001) in the mean of serum MMP-1 levels in osteoarthritis females (4027.73 ± 1345.28 pg/ml) than that in control females (798.76 ± 136.79 pg/ml). It was concluded that MMP-1 may be associated with the pathogenesis of osteoarthritis.
In this paper, point estimation for parameter ? of Maxwell-Boltzmann distribution has been investigated by using simulation technique, to estimate the parameter by two sections methods; the first section includes Non-Bayesian estimation methods, such as (Maximum Likelihood estimator method, and Moment estimator method), while the second section includes standard Bayesian estimation method, using two different priors (Inverse Chi-Square and Jeffrey) such as (standard Bayes estimator, and Bayes estimator based on Jeffrey's prior). Comparisons among these methods were made by employing mean square error measure. Simulation technique for different sample sizes has been used to compare between these methods.