As they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detected signals with various degrees of automation. This paper investigates the application of autocorrelation function (ACF) method to decompose EMG signals to their frequency components. It was found that using the proposed method gives a quite good frequency resolution as compared to that resulting from using short time fast Fourier transform (STFFT); thus more MU’s can be distinguished.
هدفت هذه الدراسة إلى تحليل نتائج الاختبار الوطني الموحد الذي تطبقه وزارة التربية والتعليم الفلسطينية في مادة الرياضيات لطلبة الصف الثامن الأساسي في المدارس الحكومية في محافظة طولكرم، وذلك لمعرفة مستوى الطلبة على هذا الاختبار في ضوء متغيرات الجنس والمنطقة التعليمية ونوع المدرسة، ومعرفة علاقة التحصيل على هذا الاختبار بتحصيل الطلبة المدرسي والمعدل العام. ولتحقيق ذلك تم تحليل درجات (3218) طالباً وطالبة؛ وهم ي
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThis paper present the fast and robust approach of English text encryption and decryption based on Pascal matrix. The technique of encryption the Arabic or English text or both and show the result when apply this method on plain text (original message) and how will form the intelligible plain text to be unintelligible plain text in order to secure information from unauthorized access and from steel information, an encryption scheme usually uses a pseudo-random enecryption key generated by an algorithm. All this done by using Pascal matrix. Encryption and decryption are done by using MATLAB as programming language and notepad ++to write the input text.This paper present the fast and robust approach of English text encryption and decryption b
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreAn analytical approach based on field data was used to determine the strength capacity of large diameter bored type piles. Also the deformations and settlements were evaluated for both vertical and lateral loadings. The analytical predictions are compared to field data obtained from a proto-type test pile used at Tharthar –Tigris canal Bridge. They were found to be with acceptable agreement of 12% deviation.
Following ASTM standards D1143M-07e1,2010, a test schedule of five loading cycles were proposed for vertical loads and series of cyclic loads to simulate horizontal loading .The load test results and analytical data of 1.95
... Show More