In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with the (GA)-based PID control is illustrated to show the validity of the proposed control method for practical applications, such as scanning microscopy.
It has become necessary to change from a traditional system to an automated system in production processes, because it has high advantages. The most important of them is improving and increasing production. But there is still a need to improve and develop the work of these systems.
The objective of this work is to study time reduction by combining multiple sequences of operations into one process. To carry out this work, the pneumatic system is designed to decrease\ increase the time of the sequence that performs a pick and place process through optimizing the sequences based on the obstacle dimensions. Three axes are represented using pneumatic cylinders that move according to the sequence used. The system is implemented and con
... Show MoreIn this paper, an approach for object tracking that is inspired from human oculomotor system is proposed and verified experimentally. The developed approach divided into two phases, fast tracking or saccadic phase and smooth pursuit phase. In the first phase, the field of the view is segmented into four regions that are analogue to retinal periphery in the oculomotor system. When the object of interest is entering these regions, the developed vision system responds by changing the values of the pan and tilt angles to allow the object lies in the fovea area and then the second phase will activate. A fuzzy logic method is implemented in the saccadic phase as an intelligent decision maker to select the values of the pan and tilt angle based
... Show MoreThe paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms
... Show MoreThe aim of this study is to design a proposed model for a document to insure the mistakes of the medical profession in estimating the compensation for medical errors. The medical profession is an honest profession aimed primarily at serving human and human beings. In this case, the doctor may be subject to error and error , And the research has adopted the descriptive approach and the research reached several conclusions, the most prominent of which is no one to bear the responsibility of medical error, although the responsibility shared and the doctor contributes to them, doctors do not deal with patients according to their educational level and cultural and there are some doctors do not inform patients The absence of a document to insu
... Show MoreThis paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics
... Show MoreThis paper introduces a complete design and simulation of a controller for the double fed induction generator (DFIG) turbine. The work also included the solar updraft tower (SUT) design to supply Al-Mahmoudia hospital in Baghdad/Iraq. The design includes the daily average load estimation, annual solar irradiance and, temperature monitoring, and logging.
According to the data obtained from the Ministry of Science and Technology, Baghdad has low wind speed. Therefore, the (SUT) has been designed to generate electrical power depending on the difference between the external and internal air temperature. The temperature difference will generate a suitable airspeed to drive the wind turbine, connected to the proposed (DFIG) generators
... Show MoreThis study delves into the design optimization of a hydropower harvesting system, exploring various parameters and their influence on system performance. By modifying the variables within the model to suit different flow conditions, a judiciously optimized design is attainable. Notably, the lift force generated is found to be intricately linked to the strategic interplay of the bluff body's location, cylinder dimensions, and flow velocity. The findings culminate in the establishment of empirical equations, one for lift force and another for displacement, based on the force equation. Many energy harvesting approaches hinge on the reciprocating motion inherent to the structural system. The methodology developed in this study emerges as a pot
... Show MoreThis paper presents an improved technique on Ant Colony Optimization (ACO) algorithm. The procedure is applied on Single Machine with Infinite Bus (SMIB) system with power system stabilizer (PSS) at three different loading regimes. The simulations are made by using MATLAB software. The results show that by using Improved Ant Colony Optimization (IACO) the system will give better performance with less number of iterations as it compared with a previous modification on ACO. In addition, the probability of selecting the arc depends on the best ant performance and the evaporation rate.
This paper presents the Extended State Observer (ESO) based repetitive control (RC) for piezoelectric actuator (PEA) based nano-positioning systems. The system stability is proved using Linear Matrix Inequalities (LMIs), which guarantees the asymptotic stability of the system. The ESObased RC used in this paper has the ability to eliminate periodic disturbances, aperiodic disturbances and model uncertainties. Moreover, ESO can be tuned using only two parameters and the model free approach of ESO-based RC, makes it an ideal solution to overcome the challenges of nano-positioning system control. Different types of periodic and aperiodic disturbances are used in simulation to demonstrate the effectiveness of the algorithm. The comparison studi
... Show MoreFinding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved. In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)
... Show More