Deep drawing process to produce square cup is very complex process due to a lot of process parameters which control on this process, therefore associated with it many of defects such as earing, wrinkling and fracture. Study of the effect of some process parameters to determine the values of these parameters which give the best result, the distributions for the thickness and depths of the cup were used to estimate the effect of the parameters on the cup numerically, in addition to experimental verification just to the conditions which give the best numerical predictions in order to reduce the time, efforts and costs for producing square cup with less defects experimentally is the aim of this study. The numerical analysis is used to study the effect of some parameters such as die profile radius, radial clearance between die and punch, blank diameter on the length and thickness distributions on the cup, dynamic-explicit (ANSYS11) code based on finite element method is utilized to simulate the square deep drawing operation. Experiments were done for comparison and verification the numerical predictions. effective square cup with less defects and acceptable thickness distributions were produced in this study. It is concluded the most thinning appear in the corner cup due to excessive stretching occur in this region and also it is found the cup thickness and height prediction by numerical analysis and in general in harmony with experimental analysis.
The problem of steady, laminar, natural convective flow in an square enclosure with and without partitions is considered for Rayleigh number (103-106) and Prandtl number (0.7). Vertical walls were maintained isothermal at different temperatures while horizontal walls and the partitions were insulated. The length of partition was taken constant. The number of partitions were placed on horizontal surface in staggered arrangement from (1– 3) and ratio of partition thickness (H/L= 0.033, 0.083, 0.124). The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on a program in Fortran 90 with the finite difference method is obtained. Representative results illustrating the effects of the thickn
... Show MoreStealth marketing is considered as one of the contemporary issues that researchers have begun to explore as a current understanding. It is the marketing approach used by organizations to promote their products and services to the public in implicit and indirect manner. In this article, the concept of stealth marketing will be discussed throw its advantages and disadvantages. In addition, the different techniques of stealth marketing have been discussed including: viral marketing, celebrity marketing, brand pushers, bait-and-tease marketing, video games marketing, and marketing in music. Furthermore, a new technique of marketing entitled “Marketing through social responsibility” has been added and discussed according to the themes in the
... Show MoreDeep Learning Techniques For Skull Stripping of Brain MR Images
A few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util
... Show MoreBackground: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreIn this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.