INTRODUCTION: A range of tools and technologies are at disposal for the purpose of defect detection. These include but are not limited to sensors, Statistical Process Control (SPC) software, Artificial Intelligence (AI) and machine learning (ML) algorithms, X-ray systems, ultrasound systems, and eddy current systems. OBJECTIVES: The determination of the suitable instrument or combination of instruments is contingent upon the precise production procedure and the category of flaw being identified. In certain cases, defects may necessitate real-time monitoring and analysis through the use of sensors and SPC software, whereas more comprehensive analysis may be required for other defects through the utilization of X-ray or ultrasound systems. METHODS: The utilization of AI and ML algorithms has gained significant traction in the realm of defect detection. This is attributed to their ability to process vast amounts of data and discern patterns that may have otherwise eluded detection. The aforementioned tools have the capability to anticipate potential flaws and implement pre-emptive measures to avert their occurrence. RESULTS: The detection of defects in automated manufacturing systems is a continuous process that necessitates meticulous observation and examination to guarantee prompt and effective identification and resolution of defects. CONCLUSION: The utilization of suitable tools and technologies is imperative for manufacturers to guarantee optimal production quality and operational success.
Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreGas and Downhole Water Sink, Gravity Drainage, GDWS-AGD, Enhance the Recovery of Oil
Background: Adjustment of any premature occlusal contact of any zirconia restoration requires its polishing or glazing in order to restore the smoothness of the restoration. The objective of this in vitro study was to evaluate the effects of different polishing systems and glazing on the surface roughness of full-contour zirconia. Material and methods: Forty disks (diameter: 8 mm, thickness: 6.4 mm) were prepared from pre-sintered full-contoured zirconia block; they were colored and sintered in a high-temperature furnace at 1500ËšC for 8 hours. The specimens were then leveled and finished using grinding and polishing machine and adjusted using diamond disk. The specimens were then randomly divided into four groups (n=10), group I involves
... Show MoreThis study aimed at comparing the performance of vertical, horizontal and hybrid subsurface flow systems in secondary treatment for the effluent wastewater from the primary basins at Al-Rustumia wastewater treatment plant, Baghdad, Iraq. The treatments were monitored for six weeks while the testsduration were from 4 to 12 September 2018 under continuous wastewater feeding for chemical oxygen demand (COD), total suspended solid (TSS),ammonia-nitrogen(NH4-N) and phosphate (PO4-P) in comparison with FAO and USEPA standards for effluent discharge to evaluate the suitability of treated water for irrigation purposes. Among the systems planted with Phragmites Australia, the hybrid subsurface flow system which cons
... Show MoreBackground: The marginal fit is the most characteristic that closely related to the longevity or success of a restoration, which is absolutely affected by the fabrication technique. The objective of present in vitro study was to evaluate the effect of four different CAD/CAM systems on the marginal fit of lithiµm disilicate all ceramic crowns. Materials and Methods: Adentoform tooth of a right mandibular first molar was prepared to receive all ceramic crown restoration with deep chamfer finishing line (1mm) and axial reduction convergence angle of 6 degree, dentoform model duplicated to have Nickel-Chromiµm master die. Thirty two stone dies produce from master die and distributed randomly in to four groups (8 dies for each group) accor
... Show MoreFUZZY CONTROLLERS F'OR SINGLE POINT CONTROLLER-I (SPC-l) SYSTEMS
Low oil extraction and early high water production are caused in part by reservoir heterogeneity. Huge quantities of water production are prevalent issues that happen in older reservoirs. Polyacrylamide polymer gel systems have been frequently employed as plugging agents in heterogeneous reservoirs to regulate water output and increase sweep efficiency. Polyacrylamide polymer gel systems are classified into three classes depending on their composition and application conditions, which are in-situ monomer gel, in-situ polymer gel, and preformed particle gel (PPG).
This paper gives a comprehensive review of PPG’s status, preparation, and mechanisms. Many sorts of PPGs are categorized, for example, millimeter-sized preformed p
... Show MoreIn this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show More