To produce Zinc Oxide NanoParticles, ZnO-NPs, different methods can be used. However, the utilization of Liquid-Phase Pulsed Laser Ablation, LP-PLA, methodology of three distinct environment of aqueous using pure zinc plate will be one of the approaches for this job. Thus, in this work, concentrates on the influence of the results after employing some changes on the environment in other words, the influence of the NPs size and/or the NPs availability/appearance. Cetyltrimethylammonium Bromide, CTAB, is one of the three surfactants that have been used in the water-based solution. That is, the Sodium Dodecyl Sulfate, SDS, besides the Distilled Water, DW, the three surfactants will be ready when the molarity of the DW is around 10− 3 M. The specifications of the employed laser are: 800 nm as a wavelength, radiating with pulses of 130 fs as a duration, which will be repeated every 1ms (1 kHz). That is, with these laser settings, the femtosecond Ti: Sapphire laser was generated to irradiate the zinc target, which attain ablation inside the aforementioned solution. Hence, according to the sort of the surfactant that has been employed in the experiment, different shades were introduced in the resultant solutions, this reveals that the NPs are appeared with various dimensions. The shadow that has been captured is the white color which ranges from foggy to milky. Note that in the experiment was utilized the UV-VIS spectroscopy test in order to evaluate and characterize the ZnO-NPs that were produced. The creation of discrete sizes of ZnO-NP was verified by the surface plasmon resonance (SPR) spectra, which displayed separate absorbance peaks. For instance, the CTAB surfactant was at 207 nm, for the SDS, it was at 212 nm, while for the DW environment, it was at 218 nm. Accordingly, it was found, using the Scanning Electron Microscopy, SEM, captured images of the created nanoparticles, that the CTAB surfactant introduces the most regular/small sizes with respect to that produced using the SDS, which gives uneven sizes and shapes. Furthermore, the NPs generated in DW formed agglomerations with diameters in the micro range and exhibited a combination of spherical and hexagonal forms. The production of ZnO-NPs was confirmed using Fourier Transform Infrared Spectroscopy (FTIR) analysis, which demonstrated absorption readings in the 435–445 cm− 1 range.
Background: Intense pulsed light (IPL) devices produce polychromatic incoherent high-intensity pulsed light with a specified wavelength spectrum, fluence, and pulse duration through the use of flashlamps and bandpass filters. Similar to lasers, IPL devices operate on the selective photothermolysis principle, with melanin acting as the chromophore. Despite this similarity, they are constructed differently and produce different amounts of light Aim of the study: To investigate the efficacy of IPL home-use device in hair reduction technique for women with unwanted facial hair. Subjects and methods: The study was conducted in Baghdad on forty-five female subjects with Fitzpatrick skin phototype (II to IV) and black, brown hair in a period of ei
... Show MoreAccurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetylene over the CeO2(111) surface. Overall, we find th
... Show MoreFrictional heat is generated when the clutch starts to engag. As a result of this operation the surface temperature is increased rapidly due to the difference in speed between the driving and driven parts. The influence of the thickness of frictional facing on the distribution of the contact pressure of the multi-disc clutches has been investigated using a numerical approach (the finite element method). The analysis of contact problem has been carried out for a multiple disc dry clutch (piston, clutch discs, separators and pressure plate). The results present the distribution of the contact pressure on all tShe surfaces of friction discs that existed in the friction clutch system. Axisymmetric finite element models have been developed to ac
... Show MoreThe influence of fear on the dynamics of harvested prey-predator model with intra-specific competition is suggested and studied, where the fear effect from the predation causes decreases of growth rate of prey. We suppose that the predator attacks the prey under the Holling type IV functional response. he existence of the solution is investigated and the bounded-ness of the solution is studied too. In addition, the dynamical behavior of the system is established locally and globally. Furthermore, the persistence conditions are investigated. Finally, numerical analysis of the system is carried out.
In this study, gold nanoparticles (AuNPs) were synthesized using a plasma jet system at different exposure times. Using ultraviolet, visible spectra, X-ray diffraction, the nanoparticles were characterized (XRD). A Plasmon surface resonance concentrated at 530, 540, and 533 nm for the prepared AuNPs. The pattern of XRD showed that the extreme peaks of the film reflect crystalline existence. The face-centered cubic structure of the gold nanoparticles was prepared for all samples, with an average crystallite size of 25-40 nm. The effect of AuNPs in vivo on liver function levels was measured. For all doses, we notice an increase in the ranks of liver function in the blood during the period of dosing, and it begins to decrease when the dosi
... Show MoreThe influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.