To produce Zinc Oxide NanoParticles, ZnO-NPs, different methods can be used. However, the utilization of Liquid-Phase Pulsed Laser Ablation, LP-PLA, methodology of three distinct environment of aqueous using pure zinc plate will be one of the approaches for this job. Thus, in this work, concentrates on the influence of the results after employing some changes on the environment in other words, the influence of the NPs size and/or the NPs availability/appearance. Cetyltrimethylammonium Bromide, CTAB, is one of the three surfactants that have been used in the water-based solution. That is, the Sodium Dodecyl Sulfate, SDS, besides the Distilled Water, DW, the three surfactants will be ready when the molarity of the DW is around 10− 3 M. The specifications of the employed laser are: 800 nm as a wavelength, radiating with pulses of 130 fs as a duration, which will be repeated every 1ms (1 kHz). That is, with these laser settings, the femtosecond Ti: Sapphire laser was generated to irradiate the zinc target, which attain ablation inside the aforementioned solution. Hence, according to the sort of the surfactant that has been employed in the experiment, different shades were introduced in the resultant solutions, this reveals that the NPs are appeared with various dimensions. The shadow that has been captured is the white color which ranges from foggy to milky. Note that in the experiment was utilized the UV-VIS spectroscopy test in order to evaluate and characterize the ZnO-NPs that were produced. The creation of discrete sizes of ZnO-NP was verified by the surface plasmon resonance (SPR) spectra, which displayed separate absorbance peaks. For instance, the CTAB surfactant was at 207 nm, for the SDS, it was at 212 nm, while for the DW environment, it was at 218 nm. Accordingly, it was found, using the Scanning Electron Microscopy, SEM, captured images of the created nanoparticles, that the CTAB surfactant introduces the most regular/small sizes with respect to that produced using the SDS, which gives uneven sizes and shapes. Furthermore, the NPs generated in DW formed agglomerations with diameters in the micro range and exhibited a combination of spherical and hexagonal forms. The production of ZnO-NPs was confirmed using Fourier Transform Infrared Spectroscopy (FTIR) analysis, which demonstrated absorption readings in the 435–445 cm− 1 range.
In this work; Silicon dioxide (SiO2) were fabricated by pulsed
laser ablation (PLA). The electron temperature was calculated by
reading the data of I-V curve of Langmuir probe which was
employed as a diagnostic technique for measuring plasma properties.
Pulsed Nd:YA Glaser was used for measuring the electron
temperature of SiO2 plasma plume under vacuum environment with
varying both pressure and axial distance from the target surface. The
electron temperature has been measured experimentally and the
effects of each of pressure and Langmuir probe distance from the
target were studied. An inverse relationship between electron
temperature and both pressure and axial distance was observed.
Self-repairing technology based on micro-capsules is an efficient solution for repairing cracked cementitious composites. Self-repairing based on microcapsules begins with the occurrence of cracks and develops by releasing self-repairing factors in the cracks located in concrete. Based on previous comprehensive studies, this paper provides an overview of various repairing factors and investigative methodologies. There has recently been a lack of consensus on the most efficient criteria for assessing self-repairing based on microcapsules and the smart solutions for improving capsule survival ratios during mixing. The most commonly utilized self-repairing efficiency assessment indicators are mechanical resistance and durab
... Show MoreThe propagation of laser beam in the underdense deuterium plasma has been studied via computer simulation using the fluid model. An appropriate computer code “HEATER” has been modified and is used for this purpose. The propagation is taken to be in a cylindrical symmetric medium. Different laser wavelengths (1 = 10.6 m, 2 = 1.06 m, and 3 = 0.53 m) with a Gaussian pulse type and 15 ns pulse widths have been considered. Absorption energy and laser flux have been calculated for different plasma and laser parameters. The absorbed laser energy showed maximum for = 0.53 m. This high absorbitivity was inferred to the effect of the pondermotive force.
We observed strong nonlinear absorption in the CdS nanoparticles of dimension in the range 50-100 nm when irradiant with femtosecond pulsed laser at 800 nm and 120 GW/cm 2 irradiance intensity. The repetition rate and average power were 250 kHz and
Exploding wire Technique is a way for production metal and its compound nanoparticle that is capable of production of bulk amount at low cost semiconductor. In this work a copper iodine nanoparticles were fabricate by exploding copper wires with different currents in iodine solution. The produced samples were examined by XRD, FTIR, SEM and TEM to characterize their properties. The XRD proved the Nano-size for producer. The crystalline size increases with increasing current. FTIR measurements show a peaks located at 638.92 for Cu-I stretch bond indicate on formation of copper iodide compound and the peaks intensities increase with increasing current. The SEM and TEM measurements show that the thin films have nanostructures.
The effect of approaching nozzle jet from the deposition surface
on structural, optical and morphology properties of copper oxide thin
films was studied. The film was prepared by homemade fully
computerized CNC spray pyrolysis deposition technique at
preparations speed (3, 4, 5, and 6 mm/sec). The repeated line mode
was used at deposition temperature equal 450 °C whereas the
spraying time was in the range of (15-30 min) according to the
deposition speed. The film exhibit polycrystalline structure with
preferred orientation along (-111), (022) and (011), (002) at a 2θ
value of (35.63o) and (38.8o) respectively. Optical band gaps were
recorded at these speed shows variance in value from (1.53-2.08 eV).
Fi
Recent research looking for acknowledgment of strategically influence of Robinson and self question at progressing the reading comprehension for students of sixth class .
To achieve research goal so the researcher mentally chose primary sixth class at the school (Tashti the primary) that followed education directorate of province (Jamjamal)/Suliymania for the scholastic year 2012-2013 as application field for their experiment of boys' number reached to (95) (female and male)students in reality (32) of the first experimental group and (31) student (female and male) from controlled group, the researcher rewarded between of three variable groups (timing period, intelligence ,Kurdish language degr
... Show More
