In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreHand-lay up method was used to prepare the samples made of epoxy (EP) as a matrix reinforced with chopped carbon fibers (CCF). The fatigue behavior of epoxy resin /chopped carbon fiber composites was studied with different weight percentage of chopped carbon fibers (2.5%,5%,7.5%,10%,12.5%). The fatigue test was carried out under alternate bending method, which was made by applying sinusoidal wave with constant displacement (15mm), stress ratio R=-1,and loading frequency 10Hz, which is believed to give a negligible temperature rise during the test. The results of the maximum stress, fatigue strength, fatigue limit and fatigue life of the tested composites are calculated from stress(S)-number of cycles(N) (S-N) curves.
It was shown that
Iron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c
Thin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
In recent years, various methods have been developed to enhance the characteristics of asphalt pavement in order to face the continuous challenges of increasing traffic loads and changing climate conditions. One of the most popular and successful methods is modifying the asphalt mixtures or asphalt binder with the addition of polymers. Therefore, two types of Polyethylene (PE) polymer, High-Density PE (HDPE) and Low-Density PE (LDPE), are used in this research. Two methods were applied to prepare PE-modified asphalt mixtures: Semi-Wet Method (S-WM) and Dry Method (DM). The findings of the investigation indicated that the addition of PE polymer can reduce the wear loss of aggregate. In general, the experimental results revealed that asphalt
... Show MoreIn this paper the effect of thermal annealing on the structural and optical properties of Antimony Selenide (Sb2Se3) is investigated. Sb2Se3 powder is evaporated on clean amorphous glass substrates at room temperature under high vacuum pressure (4.5×10-6 mbar) to form thin films. The structural investigation was done with the aid of X-ray diffraction (XRD) and atomic force microscopy (AFM). The amorphous to polycrystalline transformation of these thin films was shown by X-ray diffraction analysis after thermal annealing. These films' morphology is explained. (UV-Vis ) spectra in ranges from 300 to 1100 nm was used to examine the optical properties of the films .The absorption coefficient and optical energy gap of the investigated films are
... Show MoreIn this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage
... Show MoreSeveral schottky diodes were fabricated from polyaniline/ Carbon nanotube (single and multiwalled) composites. These composites were synthesized with different concentration and two carbon nanotubes types, Single and Multi-Walled Carbon Nanotubes (SWCNT & MWCNT). Aluminum and silver paste were chosen as schottky and ohmic contact respectively. physical and electrical were used to studied these composite by using Atomic Force Microscopy (AFM) and electrical measurements. The Root Mean Square RMS surface roughness of the composite samples was found to be around 4nm. The currentvoltage characteristic were measurements for all samples in the bias range ±15V at room temperature. The results shows the increasing in carbon nanotubes concentration
... Show MoreThis paper aims to improve the voltage profile using the Static Synchronous Compensator (STATCOM) in the power system in the Kurdistan Region for all weak buses. Power System Simulation studied it for Engineers (PSS\E) software version 33.0 to apply the Newton-Raphson (NR) method. All bus voltages were recorded and compared with the Kurdistan region grid index (0.95≤V ≤1.05), simulating the power system and finding the optimal size and suitable location of Static Synchronous Compensator (STATCOM)for bus voltage improvement at the weakest buses. It shows that Soran and New Koya substations are the best placement for adding STATCOM with the sizes 20 MVAR and 40 MVAR. After adding STATCOM with the sizes [20MVAR and 40MV
... Show More