In context of this paper we prepare high purity powder ZnO nanostructures by chemical method at low temperature solution and study the effect off annealing at high temperature, ZnO nanoparticles have been successfully synthesized by chemical method at 0Cᵒ solution. In this method, suddenly reaction is occurred between zinc acetate solution and sodium hydroxide solution at 0Cᵒ, annealing temperature of powder product surfactant plays an important role in morphological changes. The nanostructures have been characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), differential scanning calorimetry(DSC) and UV-visible .analysis Effect of annealing temperatures on the morphology , structure and optical properties is di
... Show MoreThe fabrication of Solid and Hollow silver nanoparticles (Ag NPs) has been achieved and their characterization was performed using transmission electron microscopy (TEM), zeta potential, UV–VIS spectroscopy, and X-ray diffraction (XRD). A TEM image revealed a quasispherical form for both Solid and Hollow Ag NPs. The measurement of surface charge revealed that although Hollow Ag NPs have a zeta potential of -43 mV, Solid Ag NPs have a zeta potential of -33 mV. According to UV-VIS spectroscopy measurement Solid and Hollow Ag NPs both showed absorption peaks at wavelengths of 436 nm and 412 nm, respectively. XRD pattern demonstrates that the samples' crystal structure is cubic, similar to that of the bulk materials, with
... Show MoreIn the present work, nanocomposite of poly (vinyl alcohol) (PVA) incorporated with functionalized graphene oxide (FGO) were fabricated using casting method. PVA was dispersed by varying content of FGO (0.3, 0.5, 0.8, 1 wt %). The PVA- FGO nanocomposite was characterized by FT‐IR, FE-SEM and XRD. Frequency dependence of real permittivity (ε’), imaginary (ε’’) and a.c conductivity of PVA/FGO and PVA/GO nanocomposite were studied in the frequency range 100 Hz- 1 MHz. The experimental results showed that the values of real (ε’) and imaginary permittivity (ε’’) increased dramatically by increasing the FGO content in PVA matrix. PVA/ FGO (1 wt %) nanocomposite revealed higher electrical conductivity of 6.4×10-4 Sm-1 compared to
... Show MoreChitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show MoreNew polymer blend with enhanced properties was prepared from (80 %) epoxy resin (Ep), (20%) unsaturated polyester resin (UPE) as a matrix material. The as-obtained polymer blend was further reinforced by adding Sand particles of particle size (53 μm) with various weight fraction (5, 10, 15, 20 %). Thermal conductivity and sorption measurements are performed in order to determine diffusion coefficient in different chemical solutions (NaOH, HCl) with concentration (0.3N) after immersion for specific period of time (30 days). The obtained results demonstrate that the addition of sand powder to (80%EP/20%UPE) blend leads to an increase of thermal conductivity, with an optimum/minimum diffusion coefficient in (HCl)/(NaOH), respectively.
Green nanotechnology is a thrilling and rising place of technology and generation that bracesthe ideas of inexperienced chemistry with ability advantages for sustainability, protection, andthe general protection from the race human. The inexperienced chemistry method introduces aproper technique for the production, processing, and alertness of much less dangerous chemicalsubstances to lessen threats to human fitness and the environment. The technique calls for inintensity expertise of the uncooked materials, particularly in phrases in their creation intonanomaterials and the resultant bioactivities that pose very few dangerous outcomes for peopleand the environment. In the twenty-first century, nanotechnology has become a systematic
... Show MoreIn the present study, chitosan Schiff base has been prepared from chitosan reaction with p-chloro benzaldehyde. The AuNPs and AgNPs were manufactured by extract of onion peels as a reducing agent. The AuNPs and AgNPs that have been synthesized were characterized through UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan / PEG has been prepared by using the approach of solution casting. Chitosan Schiff base / PEG Au and Ag nanocomposites were synthesized, nanocomposites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1693 cm-1 as a result of the (C=N) imine group. FESEM, DSC and TGA confirm the thermal stability
... Show MoreIn this work, γ-Al2O3NPs were successfully biosynthesized, mediated aluminum nitrate nona hydrate Al(NO3)3.9H2O, sodium hydroxide, and aqueous clove extract in alkali media. The γ-Al2O3NPs were characterized by different techniques like Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy–dispersive x-ray spectroscopy, transmission electron microscope (TEM), Energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The final results indicated the γ-Al2O3NPs nanoparticle size, bonds nature, element phase, crystallinity, morphology, surface image, particle analysis – threshold detection, and the topography parameter. The id
... Show MoreBismuth oxide nanoparticle Bi2O3NPs has a wide range of applications and less adverse effects than conventional radio sensitizers. In this work, Bi2O3NPs (D1, D2) were successfully synthesized by using the biosynthesis method with varying bismuth salts, bismuth sulfate Bi2(SO4)3 (D1) or bismuth nitrate. Penta hydrate Bi(NO3)3.5H2O (D2) with NaOH with beta-vulgaris extract. The Bi2O3NPs properties were characterized by different spectroscopic methods to determine Bi2O3NPs structure, nature of bonds, size of nanoparticle, element phase, presence, crystallinity and morphology. The existence of the Bi2O3 band was verified by the FT-IR. The Bi2O3 NPs revealed an absorption peak in the UV-visible spectrum, with energy gap Eg = 3.80eV. The X-ray p
... Show More