Preferred Language
Articles
/
abaa-158
Making political image in the election campaigns
...Show More Authors

The study discusses the marketing profile of electoral candidates and politicians especially the image that takes root in the minds of voters has become more important than the ideologies in the technological era or their party affiliations and voters are no longer paying attention to the concepts of a liberal, conservative, right-wing or secular, etc. while their interests have increased towards candidates. The consultants and image experts are able to make a dramatic shift in their electoral roles. They, as specialists in the electoral arena, dominate the roles of political parties.
The importance of the study comes from the fact that the image exceeds its normal framework in our contemporary world to become political and cultural industry with its environment, tools and systematic action.
The study aims to find out the psychological, cultural and political values contained in the image that embodies political symbols. It covers the sides and relations of image’s strength and its political and social functions which now represent the candidates and citizens within the contemporary political marketing operations.
The study tends to use descriptive approach to review the prosperities of the political image and mechanisms of those in charge of image makers. It also includes analysis of the functional role of the image in the political marketing.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Aug 07 2017
Journal Name
مجلة الاستاذ للعلوم الانسانية والاجتماعية
التربية السياسية عند الرسول محمد صلى الله عليه وسلم وتطبيقاتها التربوية
...Show More Authors

رمي البحث الحالي إلى تعرف التربية السياسية عند الرسول محمد (صلى الله عليه وسلم) وتطبيقاتها التربوية، ليكون أسوة ومثالا حيا يقتدي به في العمل السياسي على مختلف الأصعدة، وللعمل على خلق جيل من الشباب قادر على مواجهة الغزو الثقافي الذي قد يسلبهم حقوقهم في بلدهم من غير وعي، وقد تمثلت حدود البحث الحالي بالسنة النبوية في عهد الرسول محمد (صلى الله عليه وسلم) للفترة الزمنية من ولادته الرسول إلى وفاته. ومن أهم نتائج السي

... Show More
View Publication
Publication Date
Fri May 17 2013
Journal Name
International Journal Of Computer Applications
Applied Minimized Matrix Size Algorithm on the Transformed Images by DCT and DWT used for Image Compression
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Tue Oct 15 2019
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Combining Convolutional Neural Networks and Slantlet Transform For An Effective Image Retrieval Scheme
...Show More Authors

In the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),

... Show More
Scopus (10)
Crossref (3)
Scopus Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising
...Show More Authors

Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .

                In this paper  a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering  and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Multiwavelet and Estimation by Interpolation Analysis Based Hybrid Color Image Compression
...Show More Authors

Nowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band  by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained

View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Small Binary Codebook Design for Image Compression Depending on Rotating Blocks
...Show More Authors

     The searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time.   Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle  to involve four types of binary code books (i.e. Pour when , Flat when  , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding procedure, with very small distortion per block, by designing s

... Show More
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Wed Apr 10 2019
Journal Name
Engineering, Technology & Applied Science Research
Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm
...Show More Authors

Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.

... Show More
View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques
...Show More Authors

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref