In this paper, fire resistance and residual capacity tests were carried out on encased pultruded glass fiber-reinforced polymer (GFRP) I-beams with high-strength concrete beams. The specimens were loaded concurrently under 25% of the ultimate load and fire exposure (an increase in temperature of 700 °C) for 70 min. Subsequently, the fire-damaged specimens were allowed to cool and then were loaded statically until failure to explore the residual behaviors. The effects of using shear connectors and web stiffeners on the residual behavior were investigated. Finite Element (FE) analysis was developed to simulate the encased pultruded GFRP I-beams under the effect of fire loading. The thermal analyses were performed using the general-purpose FE ABAQUS package. This simulation considered the material and geometric nonlinearities and the effect of temperature on the constitutive models of materials. The FE results showed good agreement with the experimental data. The residual peak load and the corresponding mid-span deflection obtained were 5% and 4% higher than those of the experimental results. The validated FE model was utilized to explore the influence of the tensile strength of GFRP and concrete compressive strength on the post-fire flexural behavior of the encased GFRP I-beams. The encased GFRP beams kept higher residual peak loads. Moreover, the encased GFRP beam with shear connectors (EGS-F), encased GFRP beam with web stiffeners (EGW-F), and encased GFRP beam with shear connectors and web stiffeners (EGSW-F) exhibited higher residual peak loads due to the presence of shear connectors and web stiffeners. However, the web stiffeners showed a minor enhancement in the peak load.
Cantilever beams are used in many crucial applications in machinery and construction. For example, the airplane wing, the microscopic probe for atomic force measurement, the tower crane overhang and twin overhang folding bridge are typical examples of cantilever beams. The current research aims to develop an analytical solution for the free vibration problem of cantilever beams. The dynamic response of AISI 304 beam represented by the natural frequencies was determined under different working surrounding temperatures ((-100 ℃ to 400 ℃)). A Matlab code was developed to achieve the analytical solution results, considering the effect of some beam geometrical dimensions. The developed analytical solution has been verified successful
... Show MoreActive vibration control is the main problem in different structure. Smart material like piezoelectric make a structure smart, adaptive and self-controlling so, they are effective in active vibration control. In this paper piezoelectric elements are used as sensors and actuators in flexible structures for sensing and actuating purposes, and to control the vibration of a cantilever beam by using sliding mode control. The sliding mode controller (SMC) is designed to attenuate the vibration induced by initial tip displacement which is equal to 15 mm. It is designed based on the balance realization reduction method where three states are selected for the reduced model from the 24th states that describe the c
... Show MoreFire incidences are classed as catastrophic events, which mean that persons may experience mental distress and trauma. The development of a robotic vehicle specifically designed for fire extinguishing purposes has significant implications, as it not only addresses the issue of fire but also aims to safeguard human lives and minimize the extent of damage caused by indoor fire occurrences. The primary goal of the AFRC is to undergo a metamorphosis, allowing it to operate autonomously as a specialized support vehicle designed exclusively for the task of identifying and extinguishing fires. Researchers have undertaken the tasks of constructing an autonomous vehicle with robotic capabilities, devising a universal algorithm to be employed
... Show MoreThis study produces an image of theoretical and experimental case of high loading stumbling condition for hip prosthesis. Model had been studied namely Charnley. This model was modeled with finite element method by using ANSYS software, the effect of changing the design parameters (head diameter, neck length, neck ratio, stem length) on Charnley design, for stumbling case as impact load where the load reach to (8.7* body weight) for impact duration of 0.005sec.An experimental rig had been constructed to test the hip model, this rig consist of a wood box with a smooth sliding shaft where a load of 1 pound is dropped from three heights.
The strain produced by this impact is measured by using rosette strain gauge connected to Wheatstone
The experiment was conducted to study the effect of sodium chloride (NaCl) at the concentrations of 0.0, 0.5, 1.0 and 1.5% on the callus cells. The Iraq wheat variety was grown in vitro for the purpose of knowing the effect of salt stress on some indicators and cellular components of callus by using a randomized complete design, at the laboratories of tissue culture propagation date palm unit in the College of Agriculture / University of Kufa during the period 2014-2015. Fresh and dry weight, the rate of absolute growth, percentage of dry matter of callus, content of the callus cells of proline, total soluble carbohydrates, sodium and potassium ions, effectiveness of the enzymes catalase and peroxidase study shock salt proteins in callus we
... Show MoreAccurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetyl
... Show MoreDesign and build a center basins new p-type four mirrors were studied its effect on all parameters evaluating the performance of the solar cell silicon in the absence of a cooling system is switched on and noted that the efficiency of the performance Hzzh cell increased from 11.94 to 21 without cooling either with cooling has increased the efficiency of the
Cleft / palate is one of the common congenital deformities in craniofacial region, associated with different types of dental anomalies like (Tooth agenesis, impaction, and supernumerary teeth) with marked changes in palatal dimensions. This study aimed to determine the prevalence of teeth agenesis and dental anomalies in cleft lip/palate patients using CBCT, and to compare the palatal dimension of cleft group with control subjects. Twenty-eight cleft cases collected during the period from 2015 to 2022, CBCT images evaluated, the study sample classified into two groups (14 bilateral and 14 unilateral cleft lip/palate) and the non-cleft control group (14 CBCT images). The presence of dental anomalies was assessed in relation to clef
... Show More