This work involves synthesis and characterization of some new 1, 3, 4-thiadiazole or pyrazoline derivatives heterocyclic containing indole ring. The new 2-amino-1, 3, 4-thiadiazole derivatives [IV] and [V] a, b were synthesized by cyclization reaction of 2-methyl-1H-indole-carbothiosemicarbazide [III] in H2SO4 acid or by reaction of indole-3-acetic acid or indole-3-butanoic acid with thiosemicarbazide in the presence of phosphorous oxychloride, respectively. Amide derivatives [VI]-[VIII] were synthesized by the reaction equimolar of 2-amino-1, 3, 4-thiadiazoles and (acetyl chloride, benzoyl chloride, anisoyl chloride and heptanoyl chloride) in DMF and pyridine as accepter. The new pyrazolone derivatives [XI] a, b were synthesized from heating under reflux equimolar from a mixture of acid hydrazides [X] a or [X] b and ethylacetoacetate in absolute ethanol. Acetyl pyrazolone compounds [XII] a, b were synthesized by the reaction of pyrazolone derivatives [X] a or [X] b with acetyl chloride in 1, 4-Dioxane in present of calcium hydroxide to give 4-acetyl pyrazolone derivatives [XI] a, b. The new aryl hydrazone derivatives of pyrazoline [XIII] and [XIV] were synthesized by the reaction of one mole of compounds [XII] a or [XII] b with one mole of phenyl hydrazine or substituted phenyl hydrazine in ethanol. All the synthesized compounds have been characterized by melting points, FTIR, 1HNMR and Mass spectroscopy
In this work four complexes of antimony were prepared ,Na[SbO(gly)2],Na[SbO(Asp)2],Na[SbO(Tyrosin)2], Na [SbO(phen alanin)2]. by reaction SbOCl with salts amino acids identifiefid these complexes by FTIR ,their conductivity was measured and also their biological activity against two types of bacteria was studied ,they were biologically active.
Four batches of sertraline HCl microspheres were prepared using a poly (D-L-lactide-co-glycolide) (PLGA) polymer ( Mw. 9, 27, 30 and 83 KDa) as a delivery system. The microspheres were prepared by a dispersion/solvent extraction-evaporation method and characterized for drug loading by UV, particle size by laser diffractometry and surface morphology by scanning electron microscopy (SEM). The in vitro sertraline HCl release was studied. Spherical microspheres with a mean diameter of 21 to 26 µm loaded with 24.6 – 38.2% were produced. The in vitro drug release was shown to be depend on polymer molecular weight and also on the drug loading. Differential scanning calorimetry (DSC) was employed to investigate the physical state
... Show MoreA Schiff base ligand (L) was synthesized via condensation of N-( 1-naphthyl) ethylenediamine dihydrochloride with phthalaldehyde. The ligand was characterized by FT-IR, UV–Vis, 1H NMR, mass spectrometry, and elemental analysis (C, H, N). Five metal complexes (Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)) were prepared with the ligand in a 1:1 (M:L) ratio using an aqueous ethanol solution. The complexes were characterized by FT-IR, UV–Vis, mass spectrometry, and elemental analysis (C, H, N). Additionally, 1H NMR spectroscopy was employed for Cd(II) complex. Antimicrobial activity of the ligand and its metal complexes against pathogenic bacteria (K. pneumoniae, E. coli, S. aureus, and S. epidermidis) and fungus (C. albicans) were evaluated
... Show MoreA Schiff base ligand (L) was synthesized via condensation of
A Schiff base ligand (L) was synthesized via condensation of
Reaction of L1 [((E)-N1-(nitrobenzylidene)benzene-1,2-diamine] and L2( m-aminophenol), and one equivalent of di- or tri-valent metals(Cr(ӀӀӀ), Mn(ӀӀ), Fe(ӀӀӀ), Co(ӀӀ), Ni(ӀӀ), Cu(ӀӀ) and Zn(ӀӀ) afforded the complexes [M(L1)(L2)2]Cl, M=Cr(ӀӀӀ) and Fe(ӀӀӀ) and the complexes [M(L1)(L2)2] M= Mn(ӀӀ), Co(ӀӀ), Ni(ӀӀ), Cu(ӀӀ) and Zn(ӀӀ). The structure of the Schiff base ligand and their complexes are characterized by (C:H:N), FT.IR, UV.Vis, 1HNMR, 13CNMR and mass spectral. The presence of metal in the complexes are characterized by flame atomic absorption. The spectral data of the complexes have revealed the octahedral geometry. The (L1), (L2) and mixed ligand metal complexes were screened for their ability as cataly
... Show MoreA simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5,6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro(carboxylic)methylidene]-5,6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl(6-methyl-2-pyridylmethyl)amine to create a new ligand (ONMILA). This novel ligand was identified using a number
... Show MoreAromatic Schiff-bases are known to have antibacterial activity, but most of these compounds are sparingly soluble in water. The present work describes the synthesis of new Schiff-bases derived from branched aminosugars. Treatment of 3-Amino-3-Cyano-3-Deoxy-1,2:5,6-Di-O-Isopropylene-α-D-Allofuranose (1) with the aldehydes (2) under reflux in methanol afforded the Schiff-bases (3) in good yields. The new Schiff-bases were in accord with their NMR, IR spectral data and elemental analysis.