Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15 database by dividing the record's attributes into four groups, including State, Protocol, Service, and the rest of the features is Digits. Four DNA characters were used to represent each protocol attribute values. While two DNA characters are used to represent State, Service and Digits attributes values. Then, the clustering method is applied to classify the records into two clusters, either attack or normal. The current experiment results showed that the proposed system has achieved a good detection rate and accuracy results equal to 81.22% and 82.05% respectively. Also, the system achieved fast encoding and clustering time that equal 0.385 seconds and 0.00325 seconds respectively for each record.
The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreA simple straightforward mathematical method has been developed to cluster grid nodes on a boundary segment of an arbitrary geometry that can be fitted by a relevant polynomial. The method of solution is accomplished in two steps. At the first step, the length of the boundary segment is evaluated by using the mean value theorem, then grids are clustered as desired, using relevant linear clustering functions. At the second step, as the coordinates cell nodes have been computed and the incremental distance between each two nodes has been evaluated, the original coordinate of each node is then computed utilizing the same fitted polynomial with the mean value theorem but reversibly.
The method is utilized to predict
... Show MoreThis study focuses on producing wood-plastic composites using unsaturated polyester resin reinforced with Pistacia vera shell particles and wood industry waste powder. Composites with reinforcement ratios of 0%, 20%, 30%, and 40% were prepared and tested for thermal conductivity, impact strength, hardness, and compressive strength. The results revealed that thermal conductivity increases with reinforcement, while maintaining good thermal insulation, reaching a peak value of 0.633453 W/m·K. Hardness decreased with increased reinforcement, reaching a minimum nominal hardness value of 0.9479. Meanwhile, impact strength and compressive strength improved, with peak values of 14.103 k/m² and 57.3864568 MPa, respectively. The main aim is to manu
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show Moreاستخدام سلاسل ماركوف في التعرف على تعقبات الحامض النووي DNA
As many expensive and invasive procedures are used for the diagnosis or follow-up of clinical conditions, the measurement of cell-free DNA is a promising, noninvasive method, which considers using blood, follicular fluid, or seminal fluid. This method is used to determine chromosomal abnormalities, genetic disorders, and indicators of some diseases such as polycystic ovary syndrome, pre-eclampsia, and some malignancies. Cell-free DNA, which are DNA fragments outside the nucleus, originates from an apoptotic process. However, to be used as a marker for the previously mentioned diseases is still under investigation. We discuss some aspects of using cell-free DNA measurements as an indicator or marker for pathological conditions.
Motifs template is the input for many bioinformatics systems such codons finding, transcription, transaction, sequential pattern miner, and bioinformatics databases analysis. The size of motifs arranged from one base up to several Mega bases, therefore, the typing errors increase according to the size of motifs. In addition, when the structures motifs are submitted to bioinformatics systems, the specifications of motifs components are required, i.e. the simple motifs, gaps, and the lower bound and upper bound of each gap. The motifs can be of DNA, RNA, or Protein. In this research, a motif parser and visualization module is designed depending on a proposed a context free grammar, CFG, and colors human recognition system. GFC describes the m
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show More