A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete layers within a pavement structure by using their individual MR values. To achieve this aim, eight samples were cored from Iraqi Expressway no. 1; they had three layers of asphalt and were tested to obtain the MR of each core by using the uniaxial repeated loading test at 25 and 40 °C. The samples were then cut to separate each layer individually and tested for MR at the same testing temperatures; thus, a total of 60 resilient modulus tests were conducted. A new approach was introduced to estimate the equivalent MR as a function of the MR value for each layer. The results matched the values obtained by KENPAVE analysis.
Concrete is the main construction material of many structures. Exposing to loads creates cracks in concrete, which reduce the performance and durability. The decrease of concrete cracks becomes a necessity demand to ensure more durability and structural integrity of the concrete structure. Autogenous healing concrete is a kind of new smart concretes, which has the ability to reclose its cracks by means of itself. Concrete self-healing is a type of free repairs processes, which is reduce direct and indirect cost of maintenance and repairing. This work targets to inspect the mechanical properties of concrete after using two combinations of two materials (20 kg/m3 calcium hydroxide Ca(OH
The research’s main goal is to investigate the effects of using magnetic water in concrete mixes with regard to various mechanical properties such as compressive, flexural, and splitting tensile strength. The concrete mix investigated was designed to attain a specified cylinder compressive strength (30 MPa), with mix proportions of 1:1.8:2.68 cement to sand to crushed aggregate. The cement content was about 380 kg/m3, with a w/c ratio equal to 0.54, sand content of about 685 kg/m3, and gravel content of about 1,020 kg/m3. Magnetic water was prepared via passing ordinary water throughout a magnetic field with a magnetic intensity of 9,000 Gauss. The strength test
Concerns about the environment, the cost of energy, and safety mean that low-energy cold-mix asphalt materials are very interesting as a potential replacement for present-day hot mix asphalt. The main disadvantage of cold bituminous emulsion mixtures is their poor early life strength, meaning they require a long time to achieve mature strength. This research work aims to study the protentional utilization of waste and by-product materials as a filler in cold emulsion mixtures with mechanical properties comparable to those of traditional hot mix asphalt. Accordingly, cold mix asphalt was prepared to utilize paper sludge ash (PSA) and cement kiln dust (CKD) as a substitution for conventional mineral filler with percentages ranging fro
... Show MoreSelf-compacted concrete (SCC) is a highly flowable concrete, with no segregation which can be spread into place by filling the structures framework and permeate the reinforcement without any compaction or mechanical consolidation ACI 237R-14. One of the most important problems faced by concrete industry in Iraq and Gulf Arab land is deterioration due to internal sulfate attack (ISA) that causes damage of concrete and consequently reduces its compressive strength, increases expansion and may lead to its cracking and destruction. The experimental program was focused to study two ordinary Portland cements with different chemical composition with (5, 10 and 15) % percentage of high reactivity metakaoline (HRM)
... Show MoreThe world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show MoreOver the last few years, there has been a worldwide increase in the use of composite materials for rehabilitation of deficient reinforced concrete structures. One important application of this technology is the use of Carbon Fiber Reinforced Polymer (CFRP) jacket to provide external confinement of reinforced concrete columns. Square concrete column specimens 100×100×1000 mm with concrete
compressive strength of about 30 and 50 MPa, steel fiber volume fraction 0%, 0.5%, 0.75%, and percentage of longitudinal reinforcement 2.01%, 3.14% and 4.52% were tested until failure in previous research. In this research seven tested columns were repaired and rehabilitated using one layer of CFRP flexible wraps and tested to determine their ultim
Applying load to a structural member may result in a bottle-shaped compression field especially when the width of the loading is less than the width of bearing concrete members. At the Building and Construction Department – the University of Technology-Iraq, series tests on fibre reinforced concrete specimens were carried out, subjected to compression forces at the top and bottom of the specimens to produce compression field. The effects of steel fibre content, concrete compressive strength, transverse tension reinforcement, the height of test specimen, and the ratio of the width of loading plate to specimen width were studied by testing a total of tenth normal strength concrete blocks with steel fibre and one normal s
... Show MoreTest results of nine reinforced concrete one way slab with and without lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural response of one way slabs. The test parameters were considered is the lacing steel ratios of (0, 0.0025, 0.0045, and 0.0065), flexural steel ratios of (0.0025, 0.0045, and 0.0065) and span to the effective depth ratios of (11, 13, and 16). Two specimens had no lacing reinforcement and the remaining seven specimens had the lacing reinforcement. Four point bending test were carried out, one of the specimens was tested under the static load applied gradually up to failure and the other specimens were tested under repeated load (5 cyc
... Show MoreThe effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in
addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure sug