This research study Blur groups (Fuzzy Sets) which is the perception of the most modern in the application in various practical and theoretical areas and in various fields of life, was addressed to the fuzzy random variable whose value is not real, but the numbers Millbh because it expresses the mysterious phenomena or uncertain with measurements are not assertive. Fuzzy data were presented for binocular test and analysis of variance method of random Fuzzy variables , where this method depends on a number of assumptions, which is a problem that prevents the use of this method in the case of non-realized.
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show MoreObjective: to assess the awareness and knowledge of our medical students regarding dose levels of imaging procedures and radiation safety issues, and to conclude how the curriculum of clinical radiology in the college medical program impacts such knowledge.
Subjects and methods: this is a cross-sectional study conducted among 150 medical students in Alkindy College of Medicine between January 2021 to July 2021, regardless of their age or gender. The study included six grades according to the year 2020-2021. A questionnaire consisting of 12 multiple-choice questions was conducted via an online survey using Google Forms. The questions were divided into two parts
... Show MoreBackground: The study was designed for the assessment of the knowledge of medical students regarding pandemics. In the current designed study, the level of awareness was checked and the majority of students were found aware of SARS-CoV and SARS-Cov2 (Covid-19).
Objective: To assess the awareness of SARS-CoV and SARS-Cov2 (Covid-19) among medical students of Pakistan.
Subjects and Methods: A cross-sectional survey was carried out in different universities of Pakistan from May to August 2020. A self-constructed questionnaire by Pursuing the clinical and community administration of COVID-19 given by the National Health Commission of the People's Republic of China was used am
... Show MoreThe communication inspiration formed an essential foundations for contribute the influence individuals and recipients, whether negatively or positively, through the messages that were published and presented in them with multiple themes and viewpoints that covered all parts of the world and all age groups; it is directed to children addressing the various stages of childhood, as it simulates many goals, including what is directed through the digital use of educational data in television production, as it is considered an intellectual and mental bag to deliver ideas and expressive and aesthetic connotations to children, where the songs and cartoons carrying data on education; within adjacent relations and in a mutual direction, both of th
... Show MoreMansuriya Gas field is an elongated anticlinal structure aligned from NW to SE, about 25 km long and 5-6 km wide. Jeribe formation is considered the main reservoir where it contains condensate fluid and has a uniform thickness of about 60 m. The reservoir is significantly over-pressured, (TPOC, 2014).
This research is about well logs analysis, which involves the determination of Archie petrophysical parameters, water saturation, porosity, permeability and lithology. The interpretations and cross plots are done using Interactive Petrophysics (IP) V3.5 software.
The rock parameters (a, m and n) values are important in determining the water saturation where (m) can be calcul
... Show MoreIn this paper, 3D simulation of the global coronal magnetic field, which use observed line of sight component of the photosphere magnetic field from (MDI/SOHO) was carried out using potential field model. The obtained results, improved the theoretical models of the coronal magnetic field, which represent a suitable lower boundary conditions (Bx, By, Bz) at the base of the linear force-free and nonlinear force free models, provides a less computationally expensive method than other models. Generally, very high speed computer and special configuration is needed to solve such problem as well as the problem of viewing the streamline of the magnetic field. For high accuracy special mathematical treatment was adopted to solve the computation comp
... Show MoreVoice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show More