One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated temperature are first suggested as a numerical model. After that, the suggested numerical model was validated against the experimental tests conducted in this study. The validated numerical model was used to conduct a parametric study to investigate the effects of two important parameters on the structural behavior after being exposed to fire flame. The effect of burning temperatures (500, 600, and 700) oC, as well as the influence of fire duration (1 and 2) hours, were included. The experimental program validation requirement comprised four self-compacted reinforced concrete beams each of the same geometric layout (150x200x1500) mm, reinforcing details, and compressive strength (fc'=50 MPa). Four percentages of (WAPS) were considered (0, 1, 2, and 3)%. The specimens were exposed to a fire flame with a steady-state temperature (500°C), a rising rate compatible with ASTM-E119, a one-hour duration, and a sudden cooling procedure. A static (two-point) load was applied to the burned beams. Through the assessed numerical model, the numerical analysis offered by the WAPS ratio effect was carried out for the reinforced concrete beam under the effect of static load. The findings revealed that the WAPS ratio substantially impacted structural behavior. The numerical model's results were in reasonable agreement with the experimental results. Concerning the fire exposure duration (two hours) at 500 oC, the specimens containing a ratio (3%) of WAPS improved the ultimate load and the ultimate deflection by about (46.63 and 72.24)%, respectively. The highest percentage variation of the absorbed energy at failure load was also detected in the ratio (3%) to be (139.43) %. As for the hardening concrete properties (compressive strength, splitting tensile strength, and modulus of elasticity), the residual strength was (61.06, 48.87, and 32.00)%, respectively. Regarding the steady-state burning temperature (500, 600, and 700)oC for a one-hour duration, the specimens with a ratio of (3%) WAPS improved the ultimate load by about (40.70, 62.00, and 40.76)%, respectively, corresponding to zero percentage of WAPS. The residual compressive strength, splitting tensile strength, and modulus of elasticity were (72.40, 56.12, and 43.78)%, (74.36, 56.50, and 44.79)%, and (45.23, 36.57, and 28.94)%, respectively.
Magnesium hydroxide was used as flame inhibitor to increased flame resistance for tires .Magnesium hydroxide was adding with (5%,10%) weight percents to rubber master batch of tire and then exposed the resulting material to a flame generated from gas torch with (10 mm) exposure distance . Method of measuring the surface temperature opposite to the flame was used to determine the heat transferred through tire material. The results were obtained shows enhanced flame resistance for tire by added magnesium hydroxide and this resistance increased by increasing hydroxide Percentage .
Half of the oil production of the worldwide is a result of the water flooding project. But the main concern of this process is mobility control of the injected fluid, because the unfavorable mobility ratio leads to fingering effect. Adding polymer to the injection water increase the water viscosity, therefore, the displacement will be more stable and have a greater sweep efficiency.
Using of polymer flooding has received more attention these days. Polymer has great potential in the Middle East region, especially in reservoir with high temperature and salinity.
The main objective of this work is to show the effect of shear rate, salinity, temperature, polymer concentration on polymer v
... Show MoreAbstract: The aim of the research identify the effect of using the five-finger strategy in learning a movement chain on the balance beam apparatus for students in the third stage in the College of Physical Education and Sports Science, as well as to identify which groups (experimental and controlling) are better in learning the kinematic chain on the balance beam device, has been used The experimental approach is to design the experimental and control groups with pre-and post-test. The research sample was represented by third-graders, as the third division (j) was chosen by lot to represent the experimental group, and a division Third (i) to represent the control group, after which (10) students from each division were tested by lot to repr
... Show MoreThe purpose of this paper is to gain a good understanding about wake region behind the car body due to the aerodynamic effect when the air flows over the road vehicle during its movement. The main goal of this study is to discuss the effect of the geometry on the wake region and the aerodynamic drag coefficient. Results will be achieved by using two different shapes, which are the fastback and the notchback. The study will be implemented by the Computational Fluid Dynamic (CFD) by using STAR-CCM+® software for the simulation. This study investigates the steady turbulent flow using k-epsilon turbulence model. The results obtained from the simulation show that the region of the air separation behind the vehicle
... Show MoreZinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentrati
... Show MoreProcessed and red The Western diet, a modern dietary pattern, typically consists of meat, sugar-filled beverages, candies, chocolates, fried foods, prefabricated meals, refined cereals, conventionally produced animal products, high-fat dairy products, and high-fructose items. The goal of this review is to outline how the Western pattern diet affects gut microbiota and mitochondrial fitness, as well as metabolism, inflammation, and antioxidant status. Cancer, mental health, and cardiovascular health; We offer a thorough analysis of how the westernized diet and related nutrients affect immune cell responses as well as the hygienic costs of the Western diet. A consensus critical evaluation utilizing primary sources, including scientifi
... Show More