Nanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and the period of nano-treatment on the wettability of calcite is examined. We find that nano-treatment alters the wettability significantly i.e. intermediate-wet calcite turns strongly water-wet after treatment (e.g. at 20 MPa and 50 °C, θ = 64° for intermediate-wet calcite, and θ = 28° for nano-treated calcite). Consequently, pre-injection of nanofluids will significantly enhanced the storage potential. It was also found that the permanent shift in wettability after nano-treatment is a function of treatment conditions including temperature, pressure, and treatment duration time and that surfaces treated under high pressure and low temperature yield better wettability alteration efficiency. We point out that the change in wettability is attributed to the changes in surface properties of the nano-treated sample. The results of the study thus depict that nanoparticles can significantly enhance storage potential and de-risk storage projects.
The aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility an
... Show MoreThe challenge in studying fusion reaction when the projectile is neutron or proton rich halo nuclei is the coupling mechanism between the elastic and the breakup channel, therefore the motivation from the present calculations is to estimate the best coupling parameter to introduce the effect of coupled-channels for the calculations of the total cross section of the fusion , the barrier distribution of the fusion and the average angular momentum 〈L〉 for the systems 6He+206Pb, 8B+28Si, 11Be+209Bi, 17F+208Pb, 6He+238U, 8He+197Au and 15C+232Th using quantum mechanical approach. A
... Show MoreThe challenge in studying fusion reaction when the projectile is neutron or proton rich halo nuclei is the coupling mechanism between the elastic and the breakup channel, therefore the motivation from the present calculations is to estimate the best coupling parameter to introduce the effect of coupled-channels for the calculations of the total cross section of the fusion , the barrier distribution of the fusion and the average angular momentum 〈L〉 for the systems 6He+206Pb, 8B+28Si, 11Be+209Bi, 17F+208Pb, 6He+238U, 8He+197Au and 15C+232Th using quantum mechanical approach. A quantum Coupled-Channel Calculations are performed using CC code. The predictions of quantum mechanical approach are comparable with the measured data that is
... Show MoreThis study is concerned with the evaluation of the effect of Euphrates River water quality in Al-Samawa region during
the period 1984-2003 on efficiency and reliability of reverse osmosis desalination systems by calculating the calcium
sulfate scaling index depending on the following indicators: - TDS, Ca+2, Mg+2, Na+1, Cl-1, So4-2, HCO3-1. It was
found from data analysis that this index for these units is greater than permissible limit. Also, the fitted relationship
between this index and TDS is logarithmic, i.e. this index varies more rapidly than TDS, and consequently it is more
representative to the water quality than TDS.
Collapsible behaviour of soil is considered as one of the major problems in the stability of roadway embankment, the lack of cohesion between soil particles and its sensitivity to the change of moisture content are reasons for such problem. Creation of such cohesion may be achieved by implementation of liquid asphalt and introduction of Nano additives. In this work, silica fumes, fly ash and lime have been implemented with the aid of asphalt emulsion to improve the unconfined compressive strength of the collapsible soil. Specimens of 38 mm in diameter and 76 mm height have been prepared with various percentages of each type of Nano additive and fluid content. Specimens were subjected to unconfined compressive strength determination at dry a
... Show MoreCurcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established
Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films
... Show MoreWe observed strong nonlinear absorption in the CdS nanoparticles of dimension in the range 50-100 nm when irradiant with femtosecond pulsed laser at 800 nm and 120 GW/cm 2 irradiance intensity. The repetition rate and average power were 250 kHz and