Drones are highly autonomous, remote‐controlled platforms capable of performing a variety of tasks in diverse environments. A digital twin (DT) is a virtual replica of a physical system. The integration of DT with drones gives the opportunity to manipulate the drone during a mission. In this paper, the architecture of DT is presented in order to explain how the physical environment can be represented. The techniques via which drones are collecting the necessary information for DT are compared as a next step to introduce the main methods that have been applied in DT progress by drones. The findings of this research indicated that the process of incorporating DTs into drones will result in the advancement of readings from all sensors, control code and intelligence. This can be executed on the DTs, remote control for the performance of complex tasks in a variety of application environments, and simulation on the DTs without having an effect on the actual drone. On the other hand, in order to develop three‐dimensional representations of structures and construction sites, a method known as photogrammetry is used to generate these models employing drones as aerial scanners. In spite of this, there are a number of technological and social‐political obstacles that should be taken in consideration. These challenges include the interoperability of different sensors, the creation of efficiently optimized data processing algorithms, and concerns over data privacy and security.
Shumblan (SH) is one of the most undesirable aquatic plants widespread in the irrigation channels and water bodies. This work focuses on boosting the biogas potential of shumblan by co-digesting it with other types of wastes without employing any chemical or thermal pretreatments as done in previous studies. A maximum biogas recovery of 378 ml/g VS was reached using shumblan with cow manure as inoculum in a ratio of 1:1. The methane content of the biogas was 55%. Based on volatile solid (VS) and C/N ratios, biogas productions of 518, 434, and 580 ml/g VS were obtained when the shumblan was co-digested with food wastes (SH:F), paper wastes (SH:P), and green wastes (SH:G) respectively. No significant changes of methane contents were observ
... Show MoreIn this research, the semiparametric Bayesian method is compared with the classical method to estimate reliability function of three systems : k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be
... Show MoreThe region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show MoreActivated carbon (AC) is a highly important adsorbent material, as it is a solid form of pure carbon that boasts a porous structure and a large surface area, making it effective for capturing pollutants. Thanks to its exceptional features, AC is widely used for purifying water that is contaminated with odors and removing dyes in a cost-effective manner. A variety of carbonic materials have been employed to prepare AC, and this study aimed to evaluate the suitability of utilizing waste mango and avocado seeds for this purpose, followed by testing their efficacy in removing dye from aqueous solutions. The results indicate that using waste mango and avocado as AC is technically feasible, achieving dye removal percentages of 98% and 93%,
... Show MoreThe modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var
... Show MoreIn light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen
... Show More