In this paper, the general framework for calculating the stability of equilibria, Hopf bifurcation of a delayed prey-predator system with an SI type of disease in the prey population, is investigated. The impact of the incubation period delay on disease transmission utilizing a nonlinear incidence rate was taken into account. For the purpose of explaining the predation process, a modified Holling type II functional response was used. First, the existence, uniform boundedness, and positivity of the solutions of the considered model system, along with the behavior of equilibria and the existence of Hopf bifurcation, are studied. The critical values of the delay parameter for which stability switches and the nature of the Hopf bifurcation by using normal form theory and center manifold theorem are identified. Additionally, using numerical simulations and a hypothetical dataset, various dynamic characteristics are discovered, including stability switches, chaos, and Hopf bifurcation scenarios.
The exchange rate is the backbone of any economy in the world, whether developed or developing, where most countries adopted many policies, in order to ensure the stability of the exchange rate of the currency, because of its importance as a link between the local economy and the others ,And it contribute in the achievement of internal and external balance and despite the many different factors that affect it, but there is wide consensus on the effectiveness of the role of spending and the currency window in the exchange rate of the Iraqi dinar, especially in the Iraqi economy, effectiveness As the increase in government spending lead to an increase in the supply of money and increase domestic demand and high pr
... Show MoreThe spread of novel coronavirus disease (COVID-19) has resulted in chaos around the globe. The infected cases are still increasing, with many countries still showing a trend of growing daily cases. To forecast the trend of active cases, a mathematical model, namely the SIR model was used, to visualize the spread of COVID-19. For this article, the forecast of the spread of the virus in Malaysia has been made, assuming that all Malaysian will eventually be susceptible. With no vaccine and antiviral drug currently developed, the visualization of how the peak of infection (namely flattening the curve) can be reduced to minimize the effect of COVID-19 disease. For Malaysians, let’s ensure to follow the rules and obey the SOP to lower the
Abstract
The increasing of some traded Agricultural crops prices coincide with the increasing of crude oil prices in global market since the beginning of 21st century which indicate the possibility of short run and long run causality relation between the imported economic variables. The study aims to analysis the causality effects between some of Agricultural crops prices imported by Iraq and the prices of crude oil and Iraq dinar exchange rate in global markets for period (2004:1 -2016:4) theory for developing the adequate price and economic police for Iraqi economic sector. The results show the existence of short- run and long- run between the eco
... Show MoreThe understanding exchange rate policy is fundamental in order to identify the mechanism by which works out macroeconomic, And the vital for macroeconomic analysis and empirical work to differentiate between the de facto regimes and de jure regimes, Where the proved surveys and studies issued by the international monetary fund that there is divergence between the de facto regime (Regime of exchange applied by the country actually) and between the de jure regime (Regime de jure through the documents and formal writings of officials of the central bank), And launched studies on the de facto regime (Being a the basis of evaluating monetary policy) Stabilized (peg-like)arrangements or
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify t
... Show MoreThis article studied some linear and nonlinear optical characteristics of different pH solutions from anthocyanin dye extract at 180 oC from red cabbage. First, the linear spectral characteristics, including absorption and transmittance in the range 400-800 nm for anthocyanin solution 5% v/v with different pHs, were achieved utilizing a UV/VIS spectrophotometer. The experimental results reveal a shift in the absorption toward the longer wavelength direction as pH values increment. Then, the nonlinear features were measured using the Z-scan technique with a CW 532 nm laser to measure the nonlinear absorption coefficient through an open aperture. A close aperture (diameter 2 mm) calculates the nonlinear refractive index. The open Z-scan sh
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show More