Thin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transi
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreIn this research TiO2 nano-powder was prepared by a spray pyrolysis technique and then adds to the TiO2 powder with particle size (0.523 μm) in ratio (0, 5, 10, 15 at %) atomic percentage, and then deposition of the mixture on the stainless steel 316 L substrate in order to use in medical and industrial applications.
Structure properties including x-ray diffraction (XRD) and scanning electron microscope (SEM0, also some of mechanical properties and the effect of thermal annealing in different temperature have been studied. The results show that the particle size of a prepared nano-powder was 50 up to 75 nm from SEM, and the crystal structure of the powders (original and nano powder) was rutile with tetragonal cell. An improvement in
In this work, ZnS thin films have been deposited by developed laser deposition technique on glass substrates at room temperature. After deposition process, the films were annealed at different temperatures (200ºC , 300 ºC and 400ºC ) using thermal furnace.The developed technique was used to obtain homogeneous thin films of ZnS depending on vaporization of this semiconductor material by continuous CO2 laser with a simple fan to ensure obtaining homogeneous films. ZnS thin films were annealed at temperature 200ºC, 300 ºC and 400ºC for (20) minute in vacuum environment. Optical properties of ZnS thin film such as absorbance, transmittance, reflectance, optical band gap, refractive index extinction coefficient and absorption coefficien
... Show MoreEffect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
thin films of se:2.5% as were deposited on a glass substates by thermal coevaporation techniqi=ue under high vacuum at different thikness