The gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injection flows in the structure of the network of Zubair, oil field with 10 gas-lift injected wells. This will be done through numerical simulation and modeling studies. The overall enhancement of the filed production rate is found to have increased from 15767 STB/day to 19847 STB/day. The well's reservoir pressure and water cut sensitivity studies are carried out to study the possible impacts of these elements upon the well and its efficiency through the course of the field. Our understanding of the potential benefits of utilizing gas lift techniques in a field from a technical and economical point of view is deepened by the use of examples from economic analysis. Furthermore, even though the idea of employing GA in this manner is not new, this work discusses GA-based optimization methodologies for increasing the oil production rate by using gas lifting in a Zubair oilfield. In order to assign gas injection rates to specific wells in a network throughout the field using limited gas injection rates, the model for optimization will be laid out step-by-step making it simple to understand and employ as a guide, especially for the front-line production technicians involved in the development and design of gas-lift systems.
In this study, the hydromorphodynamic simulation of a stretch of the Euphrates River was conducted. The stretch of the Euphrates River extended from Haditha dam to the city of Heet in Al-Anbar Governorate and it is estimated to be 124.4 km. Samples were taken from 3 sites along the banks of the river stretch using sampling equipment. The samples were taken to the laboratory for grain size analysis where the median size (D50) and sediment load were determined. The hydromorphodynamic simulation was conducted using the NACY 2DH solver of the iRIC model. The model was calibration using the Manning roughness, sediment load, and median particle size and the validation process showed that the error between th
... Show MoreIn digital images, protecting sensitive visual information against unauthorized access is considered a critical issue; robust encryption methods are the best solution to preserve such information. This paper introduces a model designed to enhance the performance of the Tiny Encryption Algorithm (TEA) in encrypting images. Two approaches have been suggested for the image cipher process as a preprocessing step before applying the Tiny Encryption Algorithm (TEA). The step mentioned earlier aims to de-correlate and weaken adjacent pixel values as a preparation process before the encryption process. The first approach suggests an Affine transformation for image encryption at two layers, utilizing two different key sets for each layer. Th
... Show MoreLK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2
conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
Root-finding is an oldest classical problem, which is still an important research topic, due to its impact on computational algebra and geometry. In communications systems, when the impulse response of the channel is minimum phase the state of equalization algorithm is reduced and the spectral efficiency will improved. To make the channel impulse response minimum phase the prefilter which is called minimum phase filter is used, the adaptation of the minimum phase filter need root finding algorithm. In this paper, the VHDL implementation of the root finding algorithm introduced by Clark and Hau is introduced.
VHDL program is used in the work, to find the roots of two channels and make them minimum phase, the obtained output results are
Drag reduction (DR) techniques are used to improve the flow by spare the flow energy. The applications of DR are conduits in oil pipelines, oil well operations and flood water disposal, many techniques for drag reduction are used. One of these techniques is microbubbles. In this work, reduce of drag percent occurs by using a small bubbles of air pumped in the fluid transported. Gasoil is used as liquid transporting in the pipelines and air pumped as microbubbles. This study shows that the maximum value of drag reduction is 25.11%.
The present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS),respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showed that the adsorption of basic dye followed Freundlich iso
... Show MoreThe present study investigated the use of pretreated fish bone (PTFB) as a new surface, natural waste and low-cost adsorbent for the adsorption of Methyl green (MG, as model toxic basic dye) from aqueous solutions. The functional groups and surface morphology of the untreated fish bone (FB) and pretreated fish bone were characterized using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS), respectively. The effect of operating parameters including contact time, pH, adsorbent dose, temperature, and inorganic salt was evaluated. Langmuir, Freundlich and Temkin adsorption isotherm models were studied and the results showe