The study was conducted over the period of Oct 2018 to Apr 2019 and is aimed for the detection and estimation of four hazardous Volatile Organic Compounds VOC (benzene, toluene, ethylbenzene, and xylene) so-called (BTEX) in samples collected from the produced water in the Al-Ahdab oil field in Iraq also to track their availability in the important natural water sources around the field. These compounds pose a risk to human health as well as environment. To avoid the laborious and tiresome conventional extraction methods, water samples were collected and concentrated using solid-phase extraction technique (SPE) which is a robust and cost-effective method of sample extraction with minimal exposure and handling of solvents and then to be analyzed via a gas chromatograph with a flame ionization detector (GC-FID). All of the collected samples were found contaminated with the BTEX compounds by unacceptable limits exceeding the recommended percentages. BTEX compounds were also found in the aquatic samples outside the field. Standard deviation (SD) was ranging from 0.01-0.73. The purpose of this study was to track and monitor the BTEX concentrations in the water produced by the Al-Ahdab oilfield and compare it with the BTEX levels in the water sources near the oilfield. Which is very important to control the impact of the discharged waters on the environment.
This study looked at how the synthetic chitosan-AgNPs-Doxorubicin-folic acid combination affected the A549 cell line in terms of cytotoxicity and anticancer activity. By reducing silver nitrate (AgNO3) and biodegradable chitosan, silver nanoparticles were biosynthesized. The produced conjugate was examined by using FT-IR spectroscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FE-SEM). The cytotoxicity assay for the viability of A549 cells revealed that the combination of chitosan, AgNPs, doxorubicin, and folic acid decrease cell viability in a dose-determined by method over 48 hours, which direct to a dependent reduce in the activity of A549 cells. The mechanism analysis of the impacted living cells lea
... Show MoreThe aim of this investigation is to evaluate the experimental and numerical effectiveness of a new kind of composite column by using Glass Fiber‐Reinforced Polymer (GFRP) I‐section as well as steel I‐section in comparison to the typical reinforced concrete one. The experimental part included testing six composite columns categorized into two groups according to the slenderness ratio and tested under concentric axial load. Each group contains three specimens with the same dimensions and length, while different cross‐section configurations were used. Columns with reinforced concrete cross‐section (reference column), encased GFRP I‐section, and encased steel I‐section were adopted in each
A Schiff base ligand (L) was synthesized via condensation of
To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show More