Background: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studied and modeled. Results: The results revealed the positive effect of the electrodes design on the studied responses. Conclusion: Under the optimum values of the operating variables (5.675 mA/cm2, 40 min), 85.982% and 84.439% removal efficiencies of oil content and turbidity respectively were obtained and the consumption of energy and electrodes were observed as 4.333kWh/m3 and 0.36 g respectively.
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreAbstract Background: This study is aimed to assess the maxillary incisors’ root position, angulation, and buccal alveolar bone thickness in both genders and different classes of malocclusion using cone‑beam computed tomography (CBCT). Materials and Methods: Two hundred and six CBCT images were gathered and analyzed by three‑dimensional On‑Demand software to measure the variables of 803 maxillary central and lateral incisors. Genders and class difference was determined by unpaired t‑test, one‑way ANOVA, and Chi‑square tests. Results: Buccal root position of the maxillary incisors accounted for in the majority of the cases followed by the middle and palatal positions. The thickness of alveolar bone appears to have nearly the sam
... Show MoreDue to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
The objective of this research is to know the economic feasibility of hydroponics technology by estimating the expected demand for green forage for the years 2021-2031 as well as Identify and analyze project data and information in a way that helps the investor make the appropriate investment decision in addition to preparing a detailed technical preliminary study for the cultivar barley project focusing on the commercial and financing aspects and the criteria that take into account the risks and uncertainties . that indicating the economic feasibility of the project to produce green forage using hydroponics technology. Cultured barley as a product falls within the blue ocean strategy. Accordingly, the research recommends the necess
... Show MoreIn this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.
One of the principle concepts to understand any hydrocarbon field is the heterogeneity scale; This becomes particularly challenging in supergiant oil fields with medium to low lateral connectivity and carbonate reservoir rocks.
The main objectives of this study is to quantify the value of the heterogeneity for any well in question, and propagate it to the full reservoir. This is a quite useful specifically prior to conducting detailed water flooding or full field development studies and work, in order to be prepared for a proper design and exploitation requirements that fit with the level of heterogeneity of this formation.
In this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr
... Show MoreThis study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.
In cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show More