Preferred Language
Articles
/
_kKR95kBMeyNPGM3dLof
Utilizing Energy-Efficient Deep Learning Technique for Age Estimation Through a Hybrid Methodology
...Show More Authors

This study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduced by using an algorithm that calculates the predicted value. The utilization of machine learning models that have been trained on massive datasets, the implementation of strategies for correct face alignment, and the utilization of expected value regression formulations have all been significantly incorporated into the suggested approach. The model’s performance is optimized and improved in this study by utilizing several distinct classifiers, increasing the effectiveness of explicit expectations. We aimed to optimize the selection of classifiers to minimize energy consumption while achieving a mean absolute error of 2.08 (average) and a power usage of 2700 W.

Scopus Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
Efficient Energy Management for a Proposed Integrated Internet of Things-Electric Smart Meter (2IOT-ESM) System
...Show More Authors

In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement

... Show More
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
Efficient Energy Management for a Proposed Integrated Internet of Things-Electric Smart Meter (2IOT-ESM) System
...Show More Authors

In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Mar 01 2025
Journal Name
Al-khwarizmi Engineering Journal
Deep-Learning-Based Mobile Application for Detecting COVID-19
...Show More Authors

Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
A modified Mobilenetv2 architecture for fire detection systems in open areas by deep learning
...Show More Authors

This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.

Scopus Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Feb 11 2021
Journal Name
Physics In Medicine & Biology
Stereoscopic portable hybrid gamma imaging for source depth estimation
...Show More Authors
Abstract<p>Advances in gamma imaging technology mean that is now technologically feasible to conduct stereoscopic gamma imaging in a hand-held unit. This paper derives an analytical model for stereoscopic pinhole imaging which can be used to predict performance for a wide range of camera configurations. Investigation of this concept through Monte Carlo and benchtop studies, for an example configuration, shows camera-source distance measurements with a mean deviation between calculated and actual distances of <5 mm for imaging distances of 50–250 mm. By combining this technique with stereoscopic optical imaging, we are then able to calculate the depth of a radioisotope source beneath a surfa</p> ... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Utilizing the ATM technology in e-distance learning
...Show More Authors

<p>There is an Increasing demand for the education in the field of E-learning specially the higher education, and to keep contiuity between the user and the course director in any place and time. This research presents a proposed and simulation multimedia network design for distance learning utilizing ATM technique. The propsed framework determines the principle of ATM technology and shows how multimedia can be integrated within E- learning conteext. The first part of this research presents a theoretical design for the Electricity Department, university of technology. The purpose is to illustrate the usage of the ATM and Multimedia in distance learning process. In addition, this research composes two entities: Software entity

... Show More
View Publication
Scopus (9)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A comparative study of Gaussian mixture algorithm and K-means algorithm for efficient energy clustering in MWSN
...Show More Authors

Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Wed Apr 16 2025
Journal Name
International Journal Of Engineering Pedagogy (ijep)
Utilizing Machine Learning Techniques to Predict University Students' Digital Competence
...Show More Authors

Given the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref