In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
This paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi
This study examines traveling wave solutions of the SIS epidemic model with nonlocal dispersion and delay. The research shows that a key factor in determining whether traveling waves exist is the basic reproduction number R0. In particular, the system permits nontrivial traveling wave solutions for σ≥σ∗ for R0>1, whereas there are no such solutions for σ<σ∗. This is because there is a minimal wave speed σ∗>0. On the other hand, there are no traveling wave solutions when R0≤1. In conclusion, we provide several numerical simulations that illustrate the existence of TWS.
The aim of this paper is to describe an epidemic model when two SI-Type of diseases are transmitted vertically as well as horizontally through one population. The population contains two subclasses: susceptible and infectious, while the infectious are divided into three subgroups: Those infected by AIDS disease, HCV disease, and by both diseases. A nonlinear mathematical model for AIDS and HCV diseases is Suggested and analyzed. Both local and global stability for each feasible equilibrium point are determined theoretically by using the stability theory of differential equations, Routh-Hurwitz and Gershgorin theorem. Moreover, the numerical simulation was carried out on the model parameters in order to determine their impact on the disease
... Show MoreThis research aims to provide insight into the Spatial Autoregressive Quantile Regression model (SARQR), which is more general than the Spatial Autoregressive model (SAR) and Quantile Regression model (QR) by integrating aspects of both. Since Bayesian approaches may produce reliable estimates of parameter and overcome the problems that standard estimating techniques, hence, in this model (SARQR), they were used to estimate the parameters. Bayesian inference was carried out using Markov Chain Monte Carlo (MCMC) techniques. Several criteria were used in comparison, such as root mean squared error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R^2). The application was devoted on dataset of poverty rates acro
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending
In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho
... Show MoreA new class of higher derivatives for harmonic univalent functions defined by a generalized fractional integral operator inside an open unit disk E is the aim of this paper.
In this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler form. For the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are analyzed through plotting the velocity and shear stress profile.
In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.