Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is satisfied. It divides the measured data for actual power (A_p ) of the electrical model into two portions: the training portion is selected for different maximum actual powers, and the validation portion is determined based on the minimum output power consumption and then used for comparison with the actual required input power. Simulation results show the energy expenditure problem can be solved with good accuracy in energy consumption by reducing the maximum rate (A_p ) in a given time (24) hours for a single house, as well as electricity’s bill cost, is reduced.
In this research, the theme for employing a simple and sensitive method is to employ a new Schiff base ligand (N’-(4- (dimethyl amino) benzylidene)-3, 5-dinitrobenzohydrazide) to estimate Ni (II) to form orange complex (N-(4-(dimethyl amino) benzylidene)-3, 5-dinitrobenzohydrazide nickel (II) chloride) in acid medium (hydrochloric acid), it gives an absorption peak at the wavelength 485 nm. The preferred conditions were studied to form the complex and obtain the highest absorbance including concentration of Schiff base ligand, the best medium for complex formation, effects of addition sequence on complex formation, the effect of temperature on the absorbance of the complex formed, and the setting time of the formed complex. The obtained r
... Show MoreThe research Concentrates on modern Variable in the organizations that is 6 sigma. The field study is two of Iraqi industrial organizations, The first is state company of …………… , the other is the state company of ……
The problem of the research determines some questions and hypotheses, The data was Collected by question air, which contains 5 dimensions and (10) critical Successful factories .
The sample contains (42) who Works in that organizations. The points out many conclusions. The main of it, there is significant differences among the two organizations Then The research concluded with a number of important recommendations serve it's objectives .
... Show MoreSpatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimati
... Show MoreHealth and safety problem can be described by statistics it can only be understood by knowing and feeling the pain, suffering, and depression. Health and safety has a legal responsibility to protect it for everyone who can affect in the workplace. This includes manufacturers, suppliers, designers and controllers of work places and employees. Work injury is one of the major problems in manufacturing and production systems industries; it is reduced production efficiency and affects the cost. To gain flexibility from a traditional manufacturing system and production efficiency, this paper is about the application of estimating technology to preview and synthesis of Lost Time of Work Injuries in industry systems aims to provide a safe workin
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured. The manufactured physical model could be used to simulate steady state harmonic load at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into considerations include loading frequency, size of footing and different soil conditions. The footing parameters were related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used (100 200 12.5 mm) and (200 400 5.0 mm).
... Show MoreCarbon Nanopowder was fabricated by arc discharge technique at deposition pressure of 10-5 mbar Argon gas on glass substrates. The prepared carbon nano- powder was collected from chamber and purified with nitric acid at 323K .The morphology and crystalline structure of the prepared powder was examined by X-Ray Diffraction (XRD), Atomic Force Microscope (AFM), and Scanning Electron Microscope (SEM). XRD spectrums showed that the powder exhibits amorphous structure and after purification, the powder showed hexagonal structure with a preferential orientation along(002) direction ,where AFM and SEM gave very compatible estimation on the grain size and shape of the nanopowder.
The present work deals with five species of parasitic Hymenoptera belonging to Pteromalidae, Eupelmidae and Eurytornidae which have been reared from brachid beetles. A new species, Eurytoma irakensis is described and the species, Bruchocida orientalis Crawford is recorded for the first time from Iraq.
Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show More