Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is satisfied. It divides the measured data for actual power (A_p ) of the electrical model into two portions: the training portion is selected for different maximum actual powers, and the validation portion is determined based on the minimum output power consumption and then used for comparison with the actual required input power. Simulation results show the energy expenditure problem can be solved with good accuracy in energy consumption by reducing the maximum rate (A_p ) in a given time (24) hours for a single house, as well as electricity’s bill cost, is reduced.
In this research tri metal oxides were fabricated by simple chemical spray pyrolysis technique from (Sn(NO3)2.20 H2O, Zn(NO3)2.6 H2O, Cd(NO3)2.4 H2O) salts at concentration 0.1M with mixing weight ratio 50:50 were fabricated on silicon substrate n-type (111). (with & without the presence of grooves by the following diemensions (20μm width, 7.5μm depth) with thickness was about ( 0.1 ±0.05 µm) using water soluble as precursors at a substrate temperature 550 ºC±5, with spray distance (15 cm) and their gas sensing properties toward H2S gas at different concentrations (10,50,100,500 ppmv) in air were investigated at room te
... Show MoreRemote surveying of unknown bound geometries, such as the mapping of underground water supplies and tunnels, remains a challenging task. The obstacles and absorption in media make the long-distance telecommunication and localization process inefficient due to mobile sensors’ power limitations. This work develops a new short-range sequential localization approach to reduce the required amount of signal transmission power. The developed algorithm is based on a sequential localization process that can utilize a multitude of randomly distributed wireless sensors while only employing several anchors in the process. Time delay elliptic and frequency range techniques are employed in developing the proposed algebraic closed-form solution.
... Show MoreThere are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
Building numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr
Green synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show More