Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of the ISMC in the motor system response. Secondly, the bidirectional adaptive law of the switching gain is proposed to mitigate the chattering. In the proposed bidirectional adaptive law, the switching gain varies depending on the system uncertainties, providing the high switching gain initially and then moving to the lowest value when sliding mode is achieved. As a result, not only the overestimation issues of monotonically adaptive law are resolved, but also the prior information of the disturbance upper bound is no longer required. Thirdly, by using the Lyapunov theorem, the stability of the controlled servo system is mathematically proved. Finally, simulation tests are conducted to confirm the superiority of tracking and robustness of the proposed control algorithm over existing control algorithms in terms of position-tracking responses and chattering reduction.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show Morebased search on two variables two main (Administrative empowerment ) and (technical innovation) target detection relationship and influence between the five dimensions (the delegation of authority , personnel training , effective communication, work teams , motivating employees) and
(technical innovation) conducted research in General Company for electrical Industries , and through the sample included the views of managers in the various administrative levels poll .
And adopted a researcher at a major tool for data collection is questionnaire designed to find, as was the contents of the questionnaire analysis according to the Statistical Information System ( Spss), The (55) to identi
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreDocument source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing
... Show MoreGuanine has a variety of roles in chemistry, from its basic function in the storing and transferring genetic information to its usages in synthetic chemistry and other fields. Because of its distinct structure and biological importance, it is a fundamental component of contemporary study in organic chemistry and molecular biology. In this review, we focused on covering the synthetic pathways of various derivatives of guanine from the year 2000 until the present. As a result of the guanine molecule containing multiple functional groups, this gives us the ability to prepare several guanines such as O6-alkylating guanines, O6-benzylguanines, 8-aza-O6-benzylguanines, 9-substituted guanines, guanine-azo derivatives, guanine Schiff bases, guanin
... Show MoreFace Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d
... Show MoreAbstract: An unfavorable complication of root canal is vertical root fracture. The aim of present study is to evaluate the vertical root fracture of treated teeth filled with gutta percha and Resilon obturating material using different sealers. Forty mandibular premolars used in the study. Canals randomly divided into four groups (n=10). Group-A eugenol-based (Endofill) sealer with gutta percha; GroupB epoxy-amine (AH Plus) sealer with gutta percha; Group-C resin-based (Real Seal) sealer with Resilon; or Group-D epoxide-based (Perma Evolution) sealer with gutta percha. Roots mounted vertically in cold cure acrylic blocks and subjected to vertical loading with a crosshead speed of 1mm ̸min. The point at which fracture of the roots occurred
... Show MoreThe research entitled: (The Constructive Mutation of installation Systems in the Artworks of the artist Ali Al-Najar) has dealt with the concept of Mutation and its systematizations in installation in the artworks of (Ali Al-Najjar).
The research has four chapters: The first Chapter deals with the methodological framework represented by the basic problem of the research, that is concerned with the constructive mutation of installation systems.
The research aims at finding out the constructive mutation of installation systems in the artwork of ( Ali al-Najar). The research is limited by analyzing visual samples of (Ali Al-Najjar) artworks betwen (1967-1991)
The second chapter deals with the theoretical framework, it has five s