One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our cameras system to capture the images and upload them to the Amazon Simple Storage Service (AWS S3) cloud. Then two detectors were running, Haar cascade and multitask cascaded convolutional neural networks (MTCNN), at the Amazon Elastic Compute (AWS EC2) cloud, after that the output results of these two detectors are compared using accuracy and execution time. Then the classified non-permission images are uploaded to the AWS S3 cloud. The validation accuracy of the offline augmentation face detection classification model reached 98.81%, and the loss and mean square error were decreased to 0.0176 and 0.0064, respectively. The execution time of all AWS cloud systems for one image when using Haar cascade and MTCNN detectors reached three and seven seconds, respectively.
In this paper has been building a statistical model of the Saudi financial market using GARCH models that take into account Volatility in prices during periods of circulation, were also study the effect of the type of random error distribution of the time series on the accuracy of the statistical model, as it were studied two types of statistical distributions are normal distribution and the T distribution. and found by application of a measured data that the best model for the Saudi market is GARCH (1,1) model when the random error distributed t. student's .
A multivariate multisite hydrological data forecasting model was derived and checked using a case study. The philosophy is to use simultaneously the cross-variable correlations, cross-site correlations and the time lag correlations. The case study is of two variables, three sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and Darbandikhan.. The model form is similar to the first order auto regressive model, but in matrices form. A matrix for the different relative correlations mentioned above and another for their relative residuals were derived and used as the model parameters. A mathematical filter was used for both matrices to obtain the elements. The application of this model indicates i
... Show MoreThe topic of context is one of the important topics, which was mentioned as a concept in several fields and different fields, and there were many points of view that defined that concept.
He specified the title of the research (design contexts in the design of the interior space), as the research sought to identify the concept of context in the interior design of the spaces of sewing workshops. The research was divided into four chapters:
The first chapter, which consists of the methodological framework, the problem of research and the need for it, the importance of research, the goal and limits of research for sewing workshops for vocational schools from (2020-2021).
The second chapter: consists of previous studies and the theo
Since the law is the tool for implementing the state’s public policies, it is natural that its provisions (or at least some of them) seek to preserve human dignity as the source on which all rights and freedoms are based. One of the examples of humanizing the provisions of the law in France is what is known as the winter truce. What is this truce, what are the justifications for granting it, what is its historical origin, how did the legislative treatment of it develop, what are the similarities and differences between it and other legal periods included in French law, what is the scope of its application, and what are the effects resulting from it. These questions and others are what we will try to answer through this research.
In this paper, the general framework for calculating the stability of equilibria, Hopf bifurcation of a delayed prey-predator system with an SI type of disease in the prey population, is investigated. The impact of the incubation period delay on disease transmission utilizing a nonlinear incidence rate was taken into account. For the purpose of explaining the predation process, a modified Holling type II functional response was used. First, the existence, uniform boundedness, and positivity of the solutions of the considered model system, along with the behavior of equilibria and the existence of Hopf bifurcation, are studied. The critical values of the delay parameter for which stability switches and the nature of the Hopf bifurcat
... Show MoreThis article suggests and explores a three-species food chain model that includes fear effects, refuges depending on predators, and cannibalism at the second level. The Holling type II functional response determines food consumption between stages of the food chain. This study examined the long-term behavior and impacts of the suggested model's essential elements. The model's solution properties were studied. The existence and stability of every probable equilibrium point were examined. The persistence needs of the system have been determined. It was discovered what conditions could lead to local bifurcation at equilibrium points. Appropriate Lyapunov functions are utilized to investigate the overall dynamics of the system. To support the a
... Show MoreThis study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show MoreIn this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t
... Show MoreNovel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
model is derived, and the methodology is given in detail. The model is constructed depending on some measurement criteria, Akaike and Bayesian information criterion. For the new time series model, a new algorithm has been generated. The forecasting process, one and two steps ahead, is discussed in detail. Some exploratory data analysis is given in the beginning. The best model is selected based on some criteria; it is compared with some naïve models. The modified model is applied to a monthly chemical sales dataset (January 1992 to Dec 2019), where the dataset in this work has been downloaded from the United States of America census (www.census.gov). Ultimately, the forecasted sales