The ethyl acetate synthesis via heterogeneous reactive distillation is studied experimentally using ethanol and acetic acid. Three types of cation exchanging resins were used as catalysts: Zerolit 225, Zerolit 226 and Ambylite 400. Experiments were carried out in two units of the same dimensions. Each unit consisted of three sections: rectifying, reactive and stripping sections of heights (60+25+20) cm respectively and 2.5cm column diameter. The first unit (column-A-) was a fractionation type and the second unit (column-B-) was packed column. The packing type was hollow glass cylinders with 10 mm height, and 4, 5 mm inner and outer diameter respectively.
The experiment
... Show MoreIntroduction: Although soap industry is known from hundreds of years, the development accompanied with this industry was little. The development implied the mechanical equipment and the additive materials necessary to produce soap with the best specifications of shape, physical and chemical properties. Objectives: This research studies the use of vacuum reactive distillation VRD technique for soap production. Methods: Olein and Palmitin in the ratio of 3 to 1 were mixed in a flask with NaOH solution in stoichiometric amount under different vacuum pressures from -0.35 to -0.5 bar. Total conversion was reached by using the VRD technique. The soap produced by the VRD method was compared with soap prepared by the reaction - only method which
... Show MoreIn this study, the effects of different loading doses of cerium in the prepared NaY zeolite from Iraqi kaolin were investigated. Al-Duara refinery atmospheric residue fluid catalytic cracking was selected as palpation reaction for testing the catalytic activity of cerium loading NaY zeolite. The insertion of cerium in NaY zeolites has been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with cerium and the weight percent added are 0.35, 0.64, and 1.06 respectively. The effects of cerium loading to zeolite Y in different weight percent on the cracking catalysts were studied by employing a laboratory fluidized
... Show MoreFour samples of the Se55S20Sb15Sn10 alloy were prepared using the melting point method. Samples B, C and D were irradiated with (6.04×1010, 12.08×1010 and 18.12×1010 (n.cm-2s -1 ) of thermal neutron beam from a neutron source (241Am-9Be) respectively, while sample A was left not irradiated. The electrical properties were assessed both before and after the radiation. All irradiated and non-irradiated samples show three conduction mechanisms, at low temperatures, electrical conductivity is achieved by electron hopping between local states near the Fermi level. At intermediate temperatures, conduction occurs by the jumping of electrons between local states at band tails. At high temperatures, electrons transfer between extended stat
... Show MoreThis contribution reports a comprehensive investigation into the structural, electronic and thermal properties of bulk and surface terbium dioxide (TbO2); a material that enjoys wide spectra of catalytic and optical applications. Our calculated lattice dimension of 5.36 Å agrees well with the corresponding experimental value at 5.22 Å. Density of states configuration of the bulk structure exhibits a semiconducting nature. Thermo-mechanical properties of bulk TbO2 were obtained based on the quasi-harmonic approximation formalism. Heat capacities, thermal expansions and bulk modulus of the bulk TbO2 were obtained under a wide range of temperatures and pressures. The dependency of these properties on operational pressure is very evident. Cle
... Show MoreIn this study, the Halder-Wagner method was used for an analysisX-ray lines of Tio2 nanoparticles. Where the software was used to calculate the FWHM and integral breath (β) to calculate the area under the curve for each of the lines of diffraction. After that, the general equation of the halder- Wagner method is applied to calculate the volume (D), strain (ε), stress (σ), and energy per unit(u). Volume (β). Where the value of the crystal volume was equal to (0.16149870 nm) and the strain was equal to (1.044126), stress (181.678 N / m2), and energy per unit volume (94.8474 J m-3).The results obtained from these methods were then compared with those obtained from each of the new paradigm of the HalderWagner method, the Shearer developm
... Show MoreThe Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases
The Boltzmann transport equation is solved by using two- terms approximation for pure gases and mixtures. This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
The electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Also, the mixtures are have different energy values depending on transport energy between electron and molecule through the collisions. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride i
The present work is devoted to investigate the performance of a homemade Y-shape catalytic microreactor for degradation of dibenzothiophene (DBT), as a model of sulphur compounds including in gas oil, utilizing solar incident energy. The microchannel was coated with TiO2 nanoparticles which were used as a photocatalyst. Performance of the microreactor was investigated using different conditions (e.g., DBT concentration, LHSV, operating temperature, and (H2O2/DBT) ratio). Our experiments show that, in the absence of UV light, no reaction takes place. The results revealed that outlet concentration of DBT decreases as the mean residence time in the microreactor increases. Also, it was noted that operating temperature s
... Show MoreNanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C,
... Show More