Non-steroidal anti-inflammatory drugs (NSAIDs) contain free –COOH which thought to be responsible for the GI irritation associated with all traditional NSAIDs. The esterification of this group is one of an approach to ultimate aim for reduce the gastric irritation; so in this study we synthesized and preliminarily evaluated new ester compounds as new analogues with expected selectivity toward COX-2 enzyme. Synthetic procedures have been successfully developed for the generation of the target compounds (III a and b). The synthetic approach involved multi-steps procedures which include: Synthesis of 4-hydroxy benzene sulphonamide ( I b ), synthesis of Naproxen and Ibuprofen acyl chloride and then reacting them with 4-hydroxy benzene sulphonamide to form final compounds ( III a-b) .The structures of these compounds were identified and characterized using (TLC), infrared spectroscopy (FT-IR), 1H NMR data and microanalysis (CHN).Pharmacological study as anti-inflammatory activities for the final compounds were studied in rats by induced edema type of inflammation. Moreover, the results of a docking study of compounds III a-b into the COX-2 binding site revealed that its mechanism was possibly similar to that of naproxen, a COX-2 inhibitor. The effect of them on COX-2 antibody was showed it could significantly inhibit COX-2 activity.
The research deals with the concept of a New Urbanism as an urban development strategy in the suburbs of cities or in its centers that are affected by pedestrian-oriented design and the possibility of walking, as well as integrating economic classes through the diversity of housing and its costs, and this works to facilitate access to jobs and services while providing more diverse neighborhoods and reducing the use of cars , As designing separate houses in the suburbs and increasing car trips poses a threat to the environment and the quality of urban life, and thus the new urban provides a good strategy for developing
... Show MoreIn this study, the ethanolic extracts of Moringa peregrinaseeds (MPSE) were evaluated for their antiparasitic, insecticidal, herbicidal, anti-leukemic, and anti-pancreatic lipase activities. The MPSE showed moderate antileishmanial activity against Leishmania major with an IC50 of 71.7±0.46 μg/mL, compared to 10±0.05 μg/mL and 4±0.05 μg/mL for pentamidine and amphotericin B, respectively. The extract demonstrated moderate insecticidal activity with 41% mortality in Rhyzopertha dominicaand 15.7% in Tribolium castaneum. MPSE exhibitedpotent herbicidal activity against Lemna minorat 1000 μg/mL. Additionally, MPSE inhibited the proliferation of leukemia K562 cells with an IC50 of 25 μg/mL and porcine pancrea
... Show MoreBackground: Crohn's disease (CD) is an immunological disorder associated with chronic inflammatory process of several unspecific regions of gastrointestinal tract but frequently detected in the terminal Ilium and proximal colon or both. This disease frequently presented with various oral manifestations as a consequence of inflammatory process of the disease, nutritional deficiency or medications side effects. Several therapeutic approaches have been developed for CD management that are targeting the inflammatory process and directed at controlling the host immune response. Immunosuppressants such as Azathioprine and anti-TNF α agents as well as the combination of them have been widely used as an effective therapeutic modality with a bett
... Show MoreIn this research PbS and PbS:Cu films were prepered with thicknesses (0.85±0.05)?m and (0.55±0.5)?m deposit on glass and silicon substrate respectively using chemical spray pyrolysis technique with a substrate temperature 573K, from lead nitrate salt, thiourea and copper chloride. Using XRD we study the structure properties for the undoped and doped films with copper .The analysis reveals that the structure of films were cubic polycrystalline FCC with a preferred orientation along (200) plane for the undoped films and 1% doping with copper but the orientation of (111) plane is preferred with 5% doping with the rest new peaks of films and appeared because of doping. Surface topography using optical microscope were be checked, it was found
... Show MoreThis paper presents the synthesis and study of some new mixed-liagnd complexes containing tow amino acids[Alanine(Ala) and phenylalanine (phe)] with some metals . The results products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubilty The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) . Ala = Alanine acid = C3H7NO2 Phe = phenylalanine = C9H11NO2
The study of biopolymers and their derivative materials had received a considerable degree of attention from researchers in the preparation of novel material. Biopolymers and their derivatives have a wide range of applications as a result of their bio-compatibility, bio-degradability and non-toxicity. In this paper, chitosan reacted with different aldehydes(2,4 –dichloro- benzaldehyde or 2-methyl benzaldehyde), different ketones (4-bromoacetophenone or 3-aminoacetophenone) to produce chitosan schiff base (1-4) . Chitosan schiff base (1-4) reacted with glutaric acid or adipic acid in acidic media in distilled water according to the steps of Fischer and Speier to produce compounds (5-12)
... Show MoreThispaperpresentsthesynthesisandstudyofsomenewmixed-liagnd complexescontainingtowaminoacids[Alanine(Ala)andphenylalanine(phe)]withsome metals .Theresultsproductswerefoundtobesolidcrystallinecomplexeswhichhave been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubiltyThe proposed structure of the complexes using program , chem office 3D(2000) .The general formula have been given for the prepared complexes :[M(A-H)(phe-H)]M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) .Ala = Alanine acid = C3H7NO2Phe = phenylalanine = C9H11NO2