Dam break is series phenomenon that can result in fatal consequences and loss of properties. Unfortunately, the observed consequences can only be available after the dam breaks. Therefore, it is important to anticipate what will happen prior to dam break to issue suitable warning and locate the possible risk areas. This study attempts to simulate the case of dam break in Blue Nile at Roseires dam and see its consequences downstream. Roseires dam lies at a distance of 630 km south of Khartoum, Sennar dam lies at about 260 km downstream of Roseires dam. In this study hydraulic model is developed based of Hydraulic Engineering Centre (HEC), River Analysis System (RAS), and HEC- RAS. The HEC-RAS based model is calibrated and validated using observed data of the Blue Nile for several flood years. The calibrated and validated model is used to analyze the impact of flood wave due to dam break failure of Roseires dam to provide the following information: the maximum discharge, the maximum water level, the maximum velocity, the velocity and depth profiles, the flooding extent, etc. Several dam break scenarios that cover the possible failure modes were considered and the scenario that gives the worst situation is present in this paper. Piping is considered as failure mode with different failure parameters. It was found that failure of Roseires dam result in overtopping failure of Sennar dam due to the inability of the Sennar reservoir and dam to withstand the flood wave. The results also indicated that the maximum flood wave resulting from the failure of Roseires dam reaches Khartoum in 4, 6, 7 and 9 days when the maximum flow is 33105, 14724, 13249 and 12443 m3/s respectively the cities (Roseires, Sennar, Wad Medani and Khartoum ). The respective water surface level of flood wave is 481.01, 428.37 and 382.5 m in Roseires, Sennar and Khartoum and the wave speed at Khartoum is 8.97 m/s.
Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.
This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results
... Show MoreThe ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and
... Show MoreThis paper aims to improve the voltage profile using the Static Synchronous Compensator (STATCOM) in the power system in the Kurdistan Region for all weak buses. Power System Simulation studied it for Engineers (PSS\E) software version 33.0 to apply the Newton-Raphson (NR) method. All bus voltages were recorded and compared with the Kurdistan region grid index (0.95≤V ≤1.05), simulating the power system and finding the optimal size and suitable location of Static Synchronous Compensator (STATCOM)for bus voltage improvement at the weakest buses. It shows that Soran and New Koya substations are the best placement for adding STATCOM with the sizes 20 MVAR and 40 MVAR. After adding STATCOM with the sizes [20MVAR and 40MV
... Show MoreResource estimation is an essential part of reservoir evaluation and development planning which highly affects the decision-making process. The available conventional logs for 30 wells in Nasiriyah oilfield were used in this study to model the petrophysical properties of the reservoir and produce a 3D static geological reservoir model that mimics petrophysical properties distribution to estimate the stock tank oil originally in place (STOOIP) for Mishrif reservoir by volumetric method. Computer processed porosity and water saturation and a structural 2D map were utilized to construct the model which was discretized by 537840 grid blocks. These properties were distributed in 3D Space using sequential Gaussian simulation and the variation in
... Show MoreIn this study, we design narrow band pass filter for window (3_5) ?m dependent on the needle optimization method , and a comparison with global designs published -Also, the effect of change parameter design on the optical performance of filter was studded and being able to overcome the difficulties of the design.In this study, the adoption of homogeneous optical properties materials as thin film depositing on a substrate of germanium at wavelength design (? = 4 ?m). For design this kind of filters we used advanced computer program (Matlab )to build a model design dependent both matrix characteristic and Needle technique. In this paper we refer to the type of Mert function , which is used for correct optical performance acces
... Show MoreGroundwater modelling is particularly challenging in arid regions where limited water recharge is available. A fault zone will add a significant challenge to the modelling process. The Western Desert in Iraq has been chosen to implement the modelling concept and calculate the model sensitivity to the changes in aquifer hydraulic properties and calibration by researching 102 observations and irrigation wells. MODFLOW-NWT, which is a Newtonian formulation for MODFLOW-2005 approaches, have been used in this study. Further, the simulation run has been implemented using the Upstream-Weighting package (UPW) to treat the dry cells. The results show sensitivity to the change of the Kx value for the major groundwater discharge flow. Only abo
... Show MoreRecently the use of nanofluids represents very important materials. They are used in different branches like medicine, engineering, power, heat transfer, etc. The stability of nanofluids is an important factor to improve the performance of nanofluids with good results. In this research two types of nanoparticles, TiO2 (titanium oxide) and γ-Al2O3 (gamma aluminum oxide) were used with base fluid water. Two-step method were used to prepare the nanofluids. One concentration 0.003 vol. %, the nanoparticles were examined. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray diffraction (XRD) were used to accomplish these tests. The stability of the two types of nanofluids is measured by
... Show More