. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction accuracy criterion and matching curve-fitting in this work demonstrated that if the residuals of the revised model are white noise, the forecasts are unbiased. Future work investigating robust hybrid model forecasting using fuzzy neural networks would be very interesting
In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of t
... Show MoreThis study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.
Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of this
... Show MoreThe absence of ecological perception in the local urbanization resulted in the lack of a clear conception of achieving sustainability in its simplest form in the urban reality and in the city of Baghdad in particular. The research assumes the possibility of achieving urban sustainability in Iraqi cities by applying the cities for the most effective methods to implemented ecological solutions and introducing appropriate urban planning tools and improve the living environment. The research focuses on the ability to define some aspects to achieve a sustainable local urban identity from global experiences. This was performed by proposing a scheduled theoretical framework, through which the features of sustainability can be extrapolated from the
... Show MoreIn this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show More