Each project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essentially based on the repetitive construction projects’ composition of identical production units. This study develops a mathematical model to forecast repetitive construction projects using the Support Vector Machine (SVM) technique. The software (WEKA 3.9.1©2016) has been used in the process of developing the mathematical model. The number of factors affecting the planning and scheduling of the repetitive projects has been identified through a questionnaire that analyzed its results using SPSS V22 software. Three accuracy measurements, correlation coefficient (R), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), were used to check the mathematical model and to compare the actual values with predicted values. The results showed that the SVM technique was more precise than those calculated by the conventional methods and was found the best generalization with R 97 %, MAE 3.6 %, and RMSE 7 %.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MorePermeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreThis paper proposes a neuro-fuzzy system to model β-glucosidase activity based on the reaction’s pH level and temperature. The developed fuzzy inference system includes two input variables (pH level and temperature) and one output (enzyme activity). The multi-input fuzzy inference system was developed in two stages: first, developing a single input-single output fuzzy inference system for each input variable (pH, temperature) separately, using the robust adaptive network-based fuzzy inference system (ANFIS) approach. The neural network learning techniques were used to tune the membership functions based on previously published experimental data for β-glucosidase. Second, each input’s optimized membership functions from the ANF
... Show MoreIn this research paper, two techniques were used to treat the drill cuttings resulting from the oil-based drilling fluid. The drill cuttings were taken from the southern Rumaila fields which prepared for testing and fixed with 100 gm per sample and contaminated with two types of crude oil, one from Rumaila oilfields with Sp.gr of 0.882 and the other from the eastern Baghdad oilfield with Sp.gr of 0.924 besides contamination levels of 10% and 15% w/w in mass. Samples were treated first with microwave with a power applied of 540 & 180 watts as well as a time of 50 minutes. It was found that the results reached below 1% w/w in mass, except for two samples they reached below 1.5% w/w in mass. Then, the sample of 1.41% w/w in mass,
... Show MoreTo maintain a sustained competitive position in the contemporary environment of knowledge economy, organizations as an open social systems must have an ability to learn and know how to adapt to rapid changes in a proper fashion so that organizational objectives will be achieved efficiently and effectively. A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t
... Show MoreThe present study aims to present a proposed realistic and comprehensive cyber strategy for the Communications Directorate for the next five years (2022-2026) based on the extent of application and documentation of cybersecurity measures in the Directorate and the scientific bases formulating the strategy. The present study is significant in that it provides an accurate diagnosis of the capabilities of the cyber directorate in terms of strengths and weaknesses in its internal environment and the opportunities and threats that surround it in the external environment, based on the results of the assessment of the reality of cybersecurity according to the global Cybersecurity index, which provides a strong basis for building its strategic dire
... Show MoreThe variation in wing morphological features was investigated using geometric morphometric technique of the Sand Fly from two Iraqi provinces Babylon and Diyala . We distributed eleven landmarks on the wings of Sand Fly species. By using the centroid size and shape together, all species were clearly distinguished. It is clear from these results that the wing analysis is an essential method for future geometric morphometry studies to distinguish the species of Sand Flies in Iraq.
This research includes the use of an artificial intelligence algorithm, which is one of the algorithms of biological systems which is the algorithm of genetic regulatory networks (GRNs), which is a dynamic system for a group of variables representing space within time. To construct this biological system, we use (ODEs) and to analyze the stationarity of the model we use Euler's method. And through the factors that affect the process of gene expression in terms of inhibition and activation of the transcription process on DNA, we will use TF transcription factors. The current research aims to use the latest methods of the artificial intelligence algorithm. To apply Gene Regulation Networks (GRNs), we used a progr
... Show MoreThe objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show More