Preferred Language
Articles
/
ZxbdCocBVTCNdQwCXDKQ
Developing A Mathematical Model for Planning Repetitive Construction Projects By Using Support Vector Machine Technique
...Show More Authors
Abstract<p>Each project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essentially based on the repetitive construction projects’ composition of identical production units. This study develops a mathematical model to forecast repetitive construction projects using the Support Vector Machine (SVM) technique. The software (WEKA 3.9.1©2016) has been used in the process of developing the mathematical model. The number of factors affecting the planning and scheduling of the repetitive projects has been identified through a questionnaire that analyzed its results using SPSS V22 software. Three accuracy measurements, correlation coefficient (R), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), were used to check the mathematical model and to compare the actual values with predicted values. The results showed that the SVM technique was more precise than those calculated by the conventional methods and was found the best generalization with R 97 %, MAE 3.6 %, and RMSE 7 %.</p>
Clarivate Crossref
View Publication
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Annals Of Pure And Applied Mathematics
Linear Regression Model Using Bayesian Approach for Iraqi Unemployment Rate
...Show More Authors

In this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Oxidative Desulfurization of Simulated Diesel Fuel by Synthesized Tin Oxide Nano-Catalysts Support on Reduced Graphene Oxide
...Show More Authors

   The modified Hummers method was applied to prepare graphene oxide (GO) from the graphite powder. Tin oxide nanoparticles with different loading (10-20 wt.%) supported on reduced graphene oxide were synthesized to evaluate the oxidative desulfurization efficiency. The catalyst was synthesized by the incipient wetness impregnation (IWI) technique. Different analysis methods like FT-IR, XRD, FESEM, AFM, and Brunauer-Emmett-Teller (BET) were utilized to characterize graphene oxide and catalysts. The XRD analysis showed that the average crystal size of graphene oxide was 6.05 nm. In addition, the FESEM results showed high metal oxide dispersions on the rGO. The EDX analysis shows the weight ratio of Sn is close to its theoretical weight.

... Show More
View Publication Preview PDF
Crossref (12)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Diyala Journal For Pure Science
Employing difference technique in some Liu estimators to semiparametric regression model
...Show More Authors

Semiparametric methods combined parametric methods and nonparametric methods ,it is important in most of studies which take in it's nature more progress in the procedure of accurate statistical analysis which aim getting estimators efficient, the partial linear regression model is considered the most popular type of semiparametric models, which consisted of parametric component and nonparametric component in order to estimate the parametric component that have certain properties depend on the assumptions concerning the parametric component, where the absence of assumptions, parametric component will have several problems for example multicollinearity means (explanatory variables are interrelated to each other) , To treat this problem we use

... Show More
View Publication
Crossref
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
A Comparison of the Methods for Estimation of Reliability Function for Burr-XII Distribution by Using Simulation.
...Show More Authors

This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values

View Publication Preview PDF
Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
Online Sumarians Cuneiform Detection Based on Symbol Structural Vector Algorithm
...Show More Authors

The cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.

View Publication Preview PDF
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
Construction Time-Cost Optimization Modeling Using Ant Colony Optimization
...Show More Authors

In the field of construction project management, time and cost are the most important factors to be considered in planning every project, and their relationship is complex. The total cost for each project is the sum of the direct and indirect cost. Direct cost commonly represents labor, materials, equipment, etc.
Indirect cost generally represents overhead cost such as supervision, administration, consultants, and interests. Direct cost grows at an increasing rate as the project time is reduced from its original planned time. However, indirect cost continues for the life of the project and any reduction in project time means a reduction in indirect cost. Therefore, there is a trade-off between the time and cost for completing construc

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
The Prospective of Artificial Neural Network (ANN’s) Model Application to Ameliorate Management of Post Disaster Engineering Projects
...Show More Authors

Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practica

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Jan 02 2012
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Image encryption technique using Lagrange interpolation
...Show More Authors

Publication Date
Thu Dec 30 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Design a system for an approved video copyright over cloud based on biometric iris and random walk generator using watermark technique
...Show More Authors

View Publication
Scopus (53)
Crossref (12)
Scopus Crossref