This study looked at how the synthetic chitosan-AgNPs-Doxorubicin-folic acid combination affected the A549 cell line in terms of cytotoxicity and anticancer activity. By reducing silver nitrate (AgNO3) and biodegradable chitosan, silver nanoparticles were biosynthesized. The produced conjugate was examined by using FT-IR spectroscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FE-SEM). The cytotoxicity assay for the viability of A549 cells revealed that the combination of chitosan, AgNPs, doxorubicin, and folic acid decrease cell viability in a dose-determined by method over 48 hours, which direct to a dependent reduce in the activity of A549 cells. The mechanism analysis of the impacted living cells leading to apoptosis revealed a considerable rise in nuclear concentration, cytochrome c, and cell membrane permeability (dose-dependent). The bright green chromatin in DOX-treated cells was compacted or broken up, indicating an early stage of apoptosis. However, cells treated with the CS-AgNPs-DOX-FA compound displayed orange nuclei and late stage apoptosis. The findings demonstrated that A549 lung cancer cells are cytotoxic to Cs-Ag NPs-DOX-FA. The Cs-Ag NPs-DOX-FA MTT assay demonstrated that the harmful effect of 25 µg/mL on A549 cells is dose-dependent, and a rise in nuclear intensity, membrane permeability, and cytochrome were observed. Cell viability also declined, and the potential of the mitochondrial membrane changed. The fact that the release of DOX was delayed shows that nanoparticles in drug carriers may be used to reduce the exposure of healthy tissues; however, boosting the accumulation to therapeutic medicine in the tumor site.
Successfully, theoretical equations were established to study the effect of solvent polarities on the electron current density, fill factor and efficiencies of Tris (8-hydroxy) quinoline aluminum (Alq3)/ ZnO solar cells. Three different solvents studied in this theoretical works, namely 1-propanol, ethanol and acetonitrile. The quantum model of transition energy in donor–acceptor system was used to derive a current formula. After that, it has been used to calculate the fill factor and the efficiency of the solar cell. The calculations indicated that the efficiency of the solar cell is influenced by the polarity of solvents. The best performance was for the solar cell based on acetonitrile as a solvent with electron current density of (5.0
... Show MoreForty patients with acute lymphoblastic leukemia(ALL) were tested for the serum levels of total sialic acid(TSA) and the immunoglobulins before and after treatnemnt with six diffrent chemotherapy protocols while significantly
In this study serum total sailie acid concentration were tested as a scrological marker of discases activity to cvalute the result of the test in the diagonosis oe enteric fever(TSA) was measured in the serum od (50) patines with typhi fever(50)pa-tients
Succinic acid is an essential base ingredient for manufacturing various industrial chemicals. Succinic acid has been acknowledged as one of the most significant bio based building block chemicals. Rapid demand for succinic acid has been noticed in the last 10 years. The production methods and mechanisms developed. Hence, these techniques and operations need to be revised. Recently, an omnibus rule for developing succinic acid is to find renewable carbohydrate Feedstocks. The sustainability of the resource is crucial to disintegrate the massive use of petroleum based-production. Accordingly, systematically reviewing the latest findings of bacterial production and related fermentation methods is critical. Therefore, this paper aims to stud
... Show MoreMS Elias, RGM AL-helfy, Plant Archives, 2019
The purpose of this research is to prepare new vanillic acid derivatives with 1,2,4-triazole-3-thiol heterocyclic ring and evaluate their antimicrobial activity in a preliminary assessment. A multistep synthesis was established for the preparation of new vanillic acid-triazole conjugates. The intermediate of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-2-methoxyphenol (4) reacts with different heterocyclic aldehydes (thiophene-2-carboxaldehyde, pyrrole-2-carboxaldehyde, thiophene-3-carboxaldehyde, and furfural ) in ethanol containing few drops of acetic acid yielded the corresponding 4-(4-(substituted amino)-5-mercapto-4H-1,2,4-1triazol-3-yl)-2-methoxy phenol derivatives (