In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
The research includes a clinical study of Arginase and its relation with uterine fibroid. The normal value of arginase activity in female serum was found to be (0.52 ± 0.02 IU/L) in healthy group at age (35-55) years. The study also showed a highly significant increase in arginase activity (7.99 ± 0.23 IU/L) in serum of uterine fibroid patients group at (35-55years) in comparison to healthy.The results also indicated a highly significant increase in the level of progesterone, estradiol, prolactin, peroxynitrite and malondialdehyde in patients group. While a highly significant decrease in concentration of adiponectin in patients group was found in comparison to healthy.
In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
Abstract
This research deals with Building A probabilistic Linear programming model representing, the operation of production in the Middle Refinery Company (Dura, Semawa, Najaif) Considering the demand of each product (Gasoline, Kerosene,Gas Oil, Fuel Oil ).are random variables ,follows certain probability distribution, which are testing by using Statistical programme (Easy fit), thes distribution are found to be Cauchy distribution ,Erlang distribution ,Pareto distribution ,Normal distribution ,and General Extreme value distribution . &
... Show MoreIn this paper, the maximum likelihood estimates for parameter ( ) of two parameter's Weibull are studied, as well as white estimators and (Bain & Antle) estimators, also Bayes estimator for scale parameter ( ), the simulation procedures are used to find the estimators and comparing between them using MSE. Also the application is done on the data for 20 patients suffering from a headache disease.
In this study, an efficient photocatalyst for dissociation of water was prepared and studied. The chromium oxide (Cr2O3) with Titanium dioxide (TiO2) nanofibers (Cr2O3-TNFs) nanocomposite with (chitosan extract) were synthesized using ecologically friendly methods such as ultrasonic and hydrothermal techniques; such TiO2 exhibits nanofibers (TNFs) shape struct
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show More