Preferred Language
Articles
/
ZYbAPoYBIXToZYALeoDs
Numerical Modeling of Honeycombed Geocell Reinforced Soil
...Show More Authors

Shallow foundations have been commonly used to transfer load to soil layer within the permissible limits of settlement based on the bearing capacity of the soil. For most practical cases, the shape of the shallow foundation is of slight significance. Also, friction resistance forces in the first layers of soils are negligible due to non-sufficient surrounding surface area and compaction conditions. However, the bearing capacity of a shallow foundation can be increased by several techniques. Geocell is one of the geosynthetic tool applied mainly to reinforce soil. This study presents a numerical approach of honeycombed geocell steel panels reinforcing the sandy soil under shallow foundation, and several parameters are investigated such as the size and depth of honeycombed steel panels. The numerical results showed that honeycombed geocell reinforcement can increase the bearing capacity of soil by 65% and decrease the displacement of shallow foundation by 45%. This improvement of soil behavior under load resulted from the confinement of soil under foundation and increases the friction between soil and walls of geocells.

Crossref
Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Soil-Structure Interaction of Retaining Walls under Earthquake Loads
...Show More Authors

The study is devoted to both static and earthquake response analysis of retaining structures acted upon by lateral earth pressure. Two main approaches were implemented in the analysis, namely, the Mononobe-Okabe analytical method and the numerical Finite element procedure as provided in the ready software ABAQUS with explicit dynamic method. A basic case study considered in the present work is the bridge approach retaining walls as a part of AL-Jadiriya bridge intersection to obtain the effects of the backfill and the ground water on the retaining wall response including displacement of the retaining structure in addition to the behavior of the fill material. Parametric studies were carried out to evaluate the effects of several factors

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Solid State Technology
Durability Of Gypsum Soil Treated By Using Polyurethane Polymer
...Show More Authors

Gypseous soils represented one of the most complex salty soils that faced the geotechnical engineers. Structures that built on gypsum soil will undergo unexpected distortions that will eventually contribute to catastrophic failure. The purpose of this article is to understand the durability of gypsum soil against wetting drying cycles after improvement with polyurethane polymer especially investigate the effect of the wetting-drying cycle on collapsibility. The soil was brought from Sawa lake in AL-Muthanna Governorate in Iraq, with gypsum content 65.5%,  A set of Odometer tests were performed to determine the collapsibility potential (CP) for treated and untreated gypsum soil.  The result shows that adding a different per

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Soils And Foundations
Studying collapse potential of gypseous soil treated by grouting
...Show More Authors

View Publication
Crossref (48)
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Geoderma
Effect of cover crop management on soil hydraulic properties
...Show More Authors

View Publication
Scopus (79)
Crossref (79)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Numerical Investigation, Error Analysis and Application of Joint Quadrature Scheme in Physical Sciences
...Show More Authors

In this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.

View Publication Preview PDF
Scopus (16)
Crossref (1)
Scopus Crossref
Publication Date
Wed Oct 20 2010
Journal Name
The International Journal Of Advanced Manufacturing Technology
Finite element modeling and simulation of proposed design magneto-rheological valve
...Show More Authors

Magneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the ef

... Show More
View Publication
Scopus (37)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Tue May 10 2022
Journal Name
European Scholar Journal (esj)
MODELING AND COMPARISON OF CLOSED-LOOP AND OPENLOOP ADAPTIVE OPTICS SYSTEMS
...Show More Authors

Astronomers have known since the invention of the telescope that atmospheric turbulence affects celestial images. So, in order to compensate for the atmospheric aberrations of the observed wavefront, an Adaptive Optics (AO) system has been introduced. The AO can be arranged into two systems: closedloop and open-loop systems. The aim of this paper is to model and compare the performance of both AO loop systems by using one of the most recent Adaptive Optics simulation tools, the Objected-Oriented Matlab Adaptive Optics (OOMAO). Then assess the performance of closed and open loop systems by their capabilities to compensate for wavefront aberrations and improve image quality, also their effect by the observed optical bands (near-infrared band

... Show More
View Publication
Publication Date
Sat Mar 10 2018
Journal Name
Opción
The Effect of Cognitive Modeling Strategy in chemistry achievement for students
...Show More Authors

The aim of the current research is to verify the effect of the cognitive modeling strategy on the achievement of the chemistry course for the students of the first intermediate grade. To achieve the objective of the research, the null hypothesis was formulated via cognitive modeling strategy. The results showed that the experimental group's students performed better than the students in the control group. In the light of the results, the researchers concluded: The impact of the cognitive modeling strategy in the achievement of students of first intermediate grade in chemistry.

Scopus (2)
Scopus
Publication Date
Mon Sep 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Modeling and Simulation of the Boilers at Al-Mussaib Thermal Station
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Analytical Modeling of Stresses in the Wall 0f the Human Heart
...Show More Authors

The mechanical function of the heart is governed by the contractile properties of the cells, the mechanical stiffness of the muscle and connective tissue, and pressure and volume loading conditions on the organ. Although ventricular pressures and volumes are available for assessing the global pumping performance of the heart, the distribution of stress and strain that characterize regional ventricular function and change in cell biology must be known. The mechanics of the equatorial region of the left, ventricle was modeled by a thick-walled cylinder. The tangential (circumferential) stress, radial stress and longitudinal stress in the wall of the heart have been calculated. There are also significant torsional shear in the wall during b

... Show More
View Publication Preview PDF