Simulated annealing (SA) has been an effective means that can address difficulties related to optimization problems. is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP) is one of the most considerable problems in production planning, in this paper, we present multi-objective linear programming model for APP and optimized by . During the course of optimizing for the APP problem, it uncovered that the capability of was inadequate and its performance was substandard, particularly for a sizable controlled problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state will generate only one in next state that will make the search slower and the drawback is that the search may fall in local minimum which represents the best solution in only part of the solution space. In order to enhance its performance and alleviate the deficiencies in the problem solving, a modified (MD) is proposed. We attempt to augment the search space by starting with solutions, instead of one solution. To analyses and investigate the operations of the MSA with the standard and harmony search (HS), the real performance of an industrial company and simulation are made for evaluation. The results show that, compared to and , offers better quality solutions with regard to convergence and accuracy.
This Paper aims to plan the production of the electrical distribution converter (400 KV/11) for one month at Diyala Public Company and with more than one goal for the decision-maker in a fuzzy environment. The fuzzy demand was forecasting using the fuzzy time series model. The fuzzy lead time for raw materials involved in the production of the electrical distribution converter (400 KV/11) was addressed using the fuzzy inference matrix through the application of the matrix in Matlab, and since the decision-maker has more than one goal, so a mathematical model of goal programming was create, which aims to achieve two goals, the first is to reduce the total production costs of the electrical distribution converter (400 KV/11) and th
... Show MoreThis study investigates the results of electrocoagulation (EC) using aluminum (Al) electrodes as anode and stainless steel (grade 316) as a cathode for removing silica, calcium, and magnesium ions from simulated cooling tower blowdown waters. The simulated water contains (50 mg/l silica, 508 mg/l calcium, and 292 mg/l magnesium). The influence of different experimental parameters, such as current density (0.5, 1, and 2 mA/cm2), initial pH(5,7, and 10), the temperature of the simulated solution(250C and 35 0C), and electrolysis time was studied. The highest removal efficiency of 80.183%, 99.21%, and 98.06% for calcium, silica, and magnesium ions, respectively, were obtained at a current de
... Show MoreIn this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint
... Show MoreIn this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.
First, the authors apply a regularization meth
In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
Brachytherapy treatment is primarily used for the certain handling kinds of cancerous tumors. Using radionuclides for the study of tumors has been studied for a very long time, but the introduction of mathematical models or radiobiological models has made treatment planning easy. Using mathematical models helps to compute the survival probabilities of irradiated tissues and cancer cells. With the expansion of using HDR-High dose rate Brachytherapy and LDR-low dose rate Brachytherapy for the treatment of cancer, it requires fractionated does treatment plan to irradiate the tumor. In this paper, authors have discussed dose calculation algorithms that are used in Brachytherapy treatment planning. Precise and less time-consuming calculations
... Show MoreThe problem motivation of this work deals with how to control the network overhead and reduce the network latency that may cause many unwanted loops resulting from using standard routing. This work proposes three different wireless routing protocols which they are originally using some advantages for famous wireless ad-hoc routing protocols such as dynamic source routing (DSR), optimized link state routing (OLSR), destination sequenced distance vector (DSDV) and zone routing protocol (ZRP). The first proposed routing protocol is presented an enhanced destination sequenced distance vector (E-DSDV) routing protocol, while the second proposed routing protocol is designed based on using the advantages of DSDV and ZRP and we named it as
... Show More