Horizontal wells have revolutionized hydrocarbon production by enhancing recovery efficiency and reducing environmental impact. This paper presents an enhanced Black Oil Model simulator, written in Visual Basic, for three-dimensional two-phase (oil and water) flow through porous media. Unlike most existing tools, this simulator is customized for horizontal well modeling and calibrated using extensive historical data from the South Rumaila Oilfield, Iraq. The simulator first achieves a strong match with historical pressure data (1954–2004) using vertical wells, with an average deviation of less than 5% from observed pressures, and is then applied to forecast the performance of hypothetical horizontal wells (2008–2011). The results validate the simulator’s reliability in estimating bottom-hole pressure (e.g., ±3% accuracy for HRU1 well) and water–oil ratios (e.g., WOR reduction of 15% when increasing horizontal well length from 1000 m to 2000 m). Notably, the simulator demonstrated that doubling the horizontal well length reduced WOR by 15% while increasing bottom-hole pressure by only 2%, highlighting the efficiency of longer wells in mitigating water encroachment. This work contributes to improved reservoir management by enabling efficient well placement strategies and optimizing extraction planning, thereby promoting both economic and resource-efficient hydrocarbon recovery.
Reservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an esti
... Show MoreThis work aims to analyze and study the bit performance in directional oil wells which leads to get experience about the drilled area by monitoring bit performance and analyzing its work. This study is concerned with Rumaila Oil Field by studying directional hole of one oil well with different angles of inclination. Drilling program was used in order to compare with used parameters (WOB, RPM and FR).in those holes. The effect of the drilling hydraulic system on the bit performance was studied as well as the hydraulic calculation can be done by using Excel program. This study suggests method which is used to predict the value of penetration rate by studying different formation type to choose the best drilling parameters t
... Show MorePrecise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MoreThe poor hole cleaning efficiency could causes many problems such as high torque, drag, poor hydraulics and pipe stuck. These inherent problems result in an avoidable high operation cost which this study tried to address. In this study, the effect of cutting density on hole cleaning efficiency in deviated and horizontal wells was investigated. Experiments were conducted using 40 feet (12 m) long of flow loop made from iron and PVC. However, the test section was made from PVC with (5.1m) long and (4” ID) for outer pipe and (2” OD) inner pipe. The cutting transport ratio (CTR) was determined from weight measurements for each test. Cutting Transport Ratio has been investigated for effects of the following parameters; flow rate, cu
... Show MoreAsmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement inside the reser
... Show MoreAsmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement insi
... Show MoreThe Late Cretaceous-Early Paleocene Shiranish and Aliji formations have been studied in three selected wells in Jambur Oil Field (Ja-50, Ja-53, and Ja-67) in Kirkuk, Northeastern Iraq. This study included lithostratigraphy and biostratigraphy. The Late Campanian-Maastrichtian Shiranish Formation consist mainly of thin marly and chalky limestone beds overlain by thin marl beds, with some beds of marly limestone representing an outer shelf basinal environment, the unconformable contact with the above Middle Paleocene-Early Eocene Aliji Formation contain layers of limestone with marly limestone and chalky limestone which represents an outer shelf basinal environment. Five Biozones in the Shiranish Formation were determined which are: 1
... Show More