Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the original image. A lossless Hexadata encoding method is then applied to the data, which is based on reducing each set of six data items to a single encoded value. The tested results achieved acceptable saving bytes performance for the 21 iris square images of sizes 256x256 pixels which is about 22.4 KB on average with 0.79 sec decompression average time, with high saving bytes performance for 2 iris non-square images of sizes 640x480/2048x1536 that reached 76KB/2.2 sec, 1630 KB/4.71 sec respectively, Finally, the proposed promising techniques standard lossless JPEG2000 compression techniques with reduction about 1.2 and more in KB saving that implicitly demonstrating the power and efficiency of the suggested lossless biometric techniques.
The research aims to measure the efficiency of health services Quality in the province of Karbala, using the Data Envelopment analysis Models in ( 2006). According to these models the degree of efficiency ranging between zero and unity. We estimate Scale efficiency for two types of orientation direction, which are input and output oriented direction.
The results showed, according Input-oriented efficiency that the levels of Scale efficiency on average is ( 0.975), in the province of Karbala. While the index of Output-oriented efficiency on average is (o.946).
Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show More
Abstract:
We can notice cluster data in social, health and behavioral sciences, so this type of data have a link between its observations and we can express these clusters through the relationship between measurements on units within the same group.
In this research, I estimate the reliability function of cluster function by using the seemingly unrelate
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
The accurate extracting, studying, and analyzing of drainage basin morphometric aspects is important for the accurate determination of environmental factors that formed them, such as climate, tectonic activity, region lithology, and land covering vegetation.
This work was divided into three stages; the 1st stage was delineation of the Al-Abiadh basin borders using a new approach that depends on three-dimensional modeling of the studied region and a drainage network pattern extraction using (Shuttle Radar Topographic Mission) data, the 2nd was the classification of the Al-Abiadh basin streams according to their shape and widenings, and the 3rd was ex
... Show More