Preferred Language
Articles
/
ZRdnMI8BVTCNdQwCBV8p
Iris Data Compression Based on Hexa-Data Coding
...Show More Authors

Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the original image. A lossless Hexadata encoding method is then applied to the data, which is based on reducing each set of six data items to a single encoded value. The tested results achieved acceptable saving bytes performance for the 21 iris square images of sizes 256x256 pixels which is about 22.4 KB on average with 0.79 sec decompression  average time, with high saving bytes performance for 2 iris non-square images of sizes 640x480/2048x1536 that reached 76KB/2.2 sec, 1630 KB/4.71 sec respectively, Finally, the proposed promising techniques standard lossless JPEG2000 compression techniques with reduction about 1.2 and more in KB saving that implicitly demonstrating the power and efficiency of the suggested lossless biometric techniques.

Crossref
View Publication
Publication Date
Tue Aug 01 2023
Journal Name
Biomedical Signal Processing And Control
Decoding transient sEMG data for intent motion recognition in transhumeral amputees
...Show More Authors

View Publication
Scopus (23)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
A multivariate Bayesian model using Gibbs sampler with real data application
...Show More Authors

In many scientific fields, Bayesian models are commonly used in recent research. This research presents a new Bayesian model for estimating parameters and forecasting using the Gibbs sampler algorithm. Posterior distributions are generated using the inverse gamma distribution and the multivariate normal distribution as prior distributions. The new method was used to investigate and summaries Bayesian statistics' posterior distribution. The theory and derivation of the posterior distribution are explained in detail in this paper. The proposed approach is applied to three simulation datasets of 100, 300, and 500 sample sizes. Also, the procedure was extended to the real dataset called the rock intensity dataset. The actual dataset is collecte

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jun 01 2024
Journal Name
International Journal Of Advanced And Applied Sciences
High-accuracy models for iris recognition with merging features
...Show More Authors

Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual info

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Applied Study on Analysis of Fixed, Random and Mixed Panel Data Models Measured at specific time intervals
...Show More Authors

This research sought to present a concept of cross-sectional data models,  A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel  data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (54)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Iet Signal Processing
Signal compression and enhancement using a new orthogonal‐polynomial‐based discrete transform
...Show More Authors

View Publication
Scopus (41)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Data Base for Dynamic Soil Properties of Seismic Active Zones in Iraq
...Show More Authors

Iraq is located near the northern tip of the Arabian plate, which is advancing northwards relative to the Eurasian plate, and is predictably, a tectonically active country. Seismic activity in Iraq increased significantly during the last decade. So structural and geotechnical engineers have been giving increasing attention to the design of buildings for earthquake resistance. Dynamic properties play a vital role in the design of structures subjected to seismic load. The main objective of this study is to prepare a data base for the dynamic properties of different soils in seismic active zones in Iraq using the results of cross hole and down hole tests. From the data base collected it has been observed that the average ve

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
New and Existing Approaches Reviewing of Big Data Analysis with Hadoop Tools
...Show More Authors

Everybody is connected with social media like (Facebook, Twitter, LinkedIn, Instagram…etc.) that generate a large quantity of data and which traditional applications are inadequate to process. Social media are regarded as an important platform for sharing information, opinion, and knowledge of many subscribers. These basic media attribute Big data also to many issues, such as data collection, storage, moving, updating, reviewing, posting, scanning, visualization, Data protection, etc. To deal with all these problems, this is a need for an adequate system that not just prepares the details, but also provides meaningful analysis to take advantage of the difficult situations, relevant to business, proper decision, Health, social media, sc

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Data Aggregation in Wireless Sensor Networks Using Modified Voronoi Fuzzy Clustering Algorithm
...Show More Authors

Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 01 2018
Journal Name
Applied Mathematical Modelling
Identification of a multi-dimensional space-dependent heat source from boundary data
...Show More Authors

View Publication
Scopus (16)
Crossref (10)
Scopus Clarivate Crossref